Why Can't Conservation of Energy Be Used to Solve the Loop Problem in Physics?

AI Thread Summary
The discussion centers on a physics problem involving a child on a frictionless ramp entering a circular loop. The initial attempt to solve the problem using conservation of energy led to an incorrect height calculation of h = 5r/2. The correct approach involves kinematics, yielding a height of h = r/2, which is necessary to ensure the child has enough energy to complete the loop. The confusion arises from equating the speed at the bottom of the ramp with the speed required at the top of the loop. The conversation emphasizes the importance of understanding the dynamics involved rather than solely relying on energy conservation principles.
squirrelschaser
Messages
14
Reaction score
0

Homework Statement



Bob starts at rest from the top of a frictionless ramp. At the bottom of the ramp, he enters a frictionless circular loop. The total mass of the child and the cart he sits in his m. What must the height of the ramp be in order for the cart to successfully traverse the loop.

r = radius of loop
h = height of ramp
theta = angle of the ramp (irrelevant though)

Homework Equations

The Attempt at a Solution


[/B]
I solved for the minimum speed at the top of the loop.

Fy = F + mg = mv^2/r

v= sqrt(rg)

I then used conservation of energy.

Initial : mgh
Final : mg2r + (m(sqrt(rg))^2)/2

mgh = mg2r + mrg/2

mgh = 5mgr/2

Cancel stuff out h = 5r/2 (WRONG)

Instead the solution calls for using kinematics not energy conservation.

v= sqrt(rg) stills hold.

vf^2 = vi^2 + 2ax

rg = 0 + 2gsin(theta)*(h/sin(theta)

rg = 2gh

r = 2h

h = r/2 (CORRECT answer)

I understand the mathematical process of the correct solution.
However, I don't understand why I can't use conservation of energy(gives me wrong answer) instead of kinematics.

 

Attachments

  • help.png
    help.png
    2 KB · Views: 459
Physics news on Phys.org
The second answer (r/2) is clearly wrong since it would not provide enough energy to reach the top of the loop even with no remaining KE.
The calculation goes wrong because it equates the speed at the bottom of the ramp to that required at the top of the loop.
The first answer is correct.
 
The solutions I have showed the second answer as the correct answer.
haruspex said:
The second answer (r/2) is clearly wrong since it would not provide enough energy to reach the top of the loop even with no remaining KE.
The calculation goes wrong because it equates the speed at the bottom of the ramp to that required at the top of the loop.
The first answer is correct.

Really? That's the solution provided to me.
Glad to know I wasn't paranoid or something.

Is there any additional information that would make solving this question using kinematic possible, then?
 
squirrelschaser said:
Is there any additional information that would make solving this question using kinematic possible, then?
The v2-u2=2as equation is effectively KE+PE constant. All that's different is factoring out the mass.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top