Omsin said:
True, but why that doesn't change the fact that in air a heavier ball with bigger radius hits the floor at the same time as any other ball.
But when in oil why does the ball with bigger R hit the floor first??
This is my big question
Both fluids, but why seemingly following different rules
There are always two forces acting on the balls. The force due to gravity points down, and the force due to drag points in the direction opposite the motion, which is up in this case. So, the acceleration of the ball (or any object) will be the result of the
net force on the object. In other words, for a ball of mass ##m_{\mathrm{b}}## with gravitational acceleration ##g##, the ball's acceleration ##a_{\mathrm{b}}## is
m_{\mathrm{b}} a_{\mathrm{b}} = \sum F = F_{\mathrm{drag}} - m_{\mathrm{b}} g.
If you drop two balls (or any shape) in a perfect vacuum, then ##F_{\mathrm{drag}} = 0## and ##a_{\mathrm{b}} = -g## independent of mass or shape or anything else. However, if you add in a fluid, ##F_{\mathrm{drag}}## is no longer zero. In general, ##F_{\mathrm{drag}}## depends on the size and shape of an object as well as its velocity and the viscosity of the fluid.
Now, in air, the viscosity is so low that, even though the drag is not zero, it is much, much less than the weight of the balls in the case of a shape like a sphere moving at the sort of speeds we are talking about here. In other words, ##F_{\mathrm{drag}} \ll m_{\mathrm{b}}g## and you can effectively treat drag as zero for these kinds of experiments. If you had sensitive enough equipment, and could guarantee two balls were released at the same time, then they would not hit the ground at exactly the same time. They just hit so close together as to appear simultaneous. This only works for something like a sphere that is low in drag. If you dropped a sphere and a sheet of paper, it wouldn't work (or two pieces of paper) because the drag on the paper is so much higher relative to the weight of the paper.
In your video with the balls in syrup, the larger ball falls faster because, while the viscous drag increases as the ball gets larger, the mass of the ball (and thus the force on it due to gravity) increases faster than the drag. That means that the acceleration gets larger as the ball gets larger.