I Why do droplets of condensation run at an angle on a plastic sheet?

AI Thread Summary
Droplets of condensation on a plastic sheet tend to run at angles rather than straight down, creating a pattern of tracks that are mostly parallel but can veer left or right. This behavior raises questions about the forces at play beyond gravity, with possible explanations including the influence of "stretch marks" in the plastic or external wind patterns. The plastic sheet, designed to reduce heat loss, is tautly stretched, which may affect how droplets move. The discussion also humorously suggests external weather conditions, like a passing tropical storm, as a potential factor. Overall, the angle of droplet movement remains a topic of curiosity and speculation.
xtempore
Messages
19
Reaction score
13
TL;DR Summary
I put some plastic sheeting over our single-glazed windows, to reduce heat loss. I was surprised to find that droplets of condensation didn't run straight down, but appeared to run at a fairly consistent angle - left or right.
I think the picture says it all! As the droplets of condensation reached a certain size they begin to run down the plastic sheet, but rather than just running straight down, they veer off to the left or right. Most of the tracks are at fairly much parallel, with some exceptions, and the pattern can go either left or right, but the angle looks to be similar.

So, obviously gravity is acting as a force, straight down, so what force is causing these droplets to run at angles? And why that reasonably consistent angle?

The plastic sheeting is meant to reduce heat loss. It's stuck to the window frame with double-sided tape, and there is a space between the plastic and the glass (basically a cheap version of double-glazing). The plastic is then stretched taut by using a hair-dryer to remove any wrinkles.

Any ideas?

weird-droplet-tracks.jpg
 
  • Like
Likes vanhees71 and Drakkith
Physics news on Phys.org
Shrinkwrap sheets come pre-stretched in a number of directions, the normally jumbled up molecules locked to each other. Heating it up unlocks the bonds, returning the molecules to being jumbled up, again, and "shrinking" the sheet.

The water droplets are traveling down "stretch marks".
 
Last edited:
  • Like
Likes russ_watters, anorlunda and vanhees71
Alternate theory: a very consistent wind blowing past your house from the left, then switching to from the right.

Maybe a tropical storm just passed directly over you.

:oldbiggrin:
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top