Why Do 'Forbidden Zones' Exist in Goldbach Partitions?

  • Thread starter Thread starter Paul Mackenzie
  • Start date Start date
  • Tags Tags
    partitions Ratio
Paul Mackenzie
Messages
16
Reaction score
0
Hi All;

The following attachment shows a diagram of the ratio

R[2m] = g^2[2m]/g[2m-2]*g[2m+2] where g[2m] is the number of goldbach partitions for the even number 2m.

What is the reason for the "forbidden zones". I understand this is somehow to do with the factors of the even number, but why the empty zones.

Regards
 

Attachments

Physics news on Phys.org
If you assume (out of my left sleeve) that g[2m-2],g[2m],g[2m+2] are numbers more or less close to N, whenever the corresponding 2m-2, 2m, 2m+2 are not divisible by 3 (that is, on the lower region of the 'comet'), and close to 2N otherwise (the upper region of the comet), then, as one of 2m-2, 2m, 2m+2 will be divisible by 3 and the others won't, your ratio -- assuming that you mean g^2[2m]/(g[2m-2]*g[2m+2]) -- would end up close to either (4N^2)/(N^2) = 4 or to (N^2)/(2N^2) = 0.5, which is more or less what you see.

But of course, this is just a pile of speculation and loosely founded assumptions on my part.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top