B Why Do We Use Different Pairs of Filters to Determine the Temperature of Stars?

AI Thread Summary
Different pairs of filters are used to determine star temperatures because they optimize light capture based on the star's temperature range. For cooler stars, R-I filters are preferred as they capture more light in the red-infrared range, where these stars emit more energy. In contrast, hotter stars are measured with B-V filters, which align with their emission spectrum. The accuracy of temperature calculations is affected by the number of photons captured; fewer photons lead to greater measurement errors. Thus, using appropriate filters enhances the precision of temperature estimations for different types of stars.
heavystray
Messages
71
Reaction score
0
Hi, in determining the temperature of stars using colour index (U-B,B-V,V-R, etc), why do we need to use the appropriate pairs of filters based on their range of temperature? (this is what i read from wiki)

For cool stars, we use R-I, and for hotter stars, we use B-V. I don't understand how using different pairs of filters make a difference because isn't radiation curve of blackbodies with different temperature have different shape and thus, the values of (B-V, U-B, V-R) will also be different? (I hope you understand what I'm trying too say)

My idea is this has to do with the star's peak wavelength...but i still don't see the justification to that...
your help would be greatly appreciated
 
Astronomy news on Phys.org
heavystray said:
For cool stars, we use R-I, and for hotter stars, we use B-V. I don't understand how using different pairs of filters make a difference because isn't radiation curve of blackbodies with different temperature have different shape and thus, the values of (B-V, U-B, V-R) will also be different? (I hope you understand what I'm trying too say)

I'm betting that astronomers use the R-I filters instead of the B-V filters for cooler stars so that you don't block out most of the light. Cool stars don't put out much visible light in the higher frequencies, so using a bandpass in the red-infrared range makes them easier to see and measure.
 
Drakkith said:
I'm betting that astronomers use the R-I filters instead of the B-V filters for cooler stars so that you don't block out most of the light. Cool stars don't put out much visible light in the higher frequencies, so using a bandpass in the red-infrared range makes them easier to see and measure.

Right. Look at this plot showing the filter bandpasses with a 3000 K (red) blackbody and a 10,000K (blue) blackbody. You can see that the hot blue star doesn't have much light in the I band, and the cool red star doesn't have much in the B band.
Filter.png
 

Attachments

  • Filter.png
    Filter.png
    15.5 KB · Views: 882
phyzguy said:
Right. Look at this plot showing the filter bandpasses with a 3000 K (red) blackbody and a 10,000K (blue) blackbody. You can see that the hot blue star doesn't have much light in the I band, and the cool red star doesn't have much in the B band.
View attachment 219165
but the question is, why does it affect the accuracy of temperature calculated based on the star's U-/B/B-V/V-R?? because we're just going to get either lower or higher values of B-V, V-R, R-I which correspond to temperatures. I mean for cooler stars, we already expected their U-B will be low. so, it shouldn't be a problem to determine their temperature based on the U-B value. Isn't the accuracy going to be just the same if we determine the temperature using R-I filters? (i hope you understand my question)

thanks for your answer
 
Drakkith said:
I'm betting that astronomers use the R-I filters instead of the B-V filters for cooler stars so that you don't block out most of the light. Cool stars don't put out much visible light in the higher frequencies, so using a bandpass in the red-infrared range makes them easier to see and measure.
yes it's easier to measure, but the question is, why does it affect the accuracy of temperature calculated based on the star's U-/B/B-V/V-R?? because we're just going to get either lower or higher values of B-V, V-R, R-I which correspond to temperatures. I mean for cooler stars, we already expected their U-B will be low. so, it shouldn't be a problem to determine their temperature based on the U-B value. Isn't the accuracy going to be just the same if we determine the temperature using R-I filters? (i hope you understand my question)

thanks for your answer
 
heavystray said:
yes it's easier to measure, but the question is, why does it affect the accuracy of temperature calculated based on the star's U-/B/B-V/V-R?? because we're just going to get either lower or higher values of B-V, V-R, R-I which correspond to temperatures. I mean for cooler stars, we already expected their U-B will be low. so, it shouldn't be a problem to determine their temperature based on the U-B value. Isn't the accuracy going to be just the same if we determine the temperature using R-I filters? (i hope you understand my question)

The lower the light intensity, the fewer photons there are to measure and the lower the accuracy. If you take a star, which is dim to begin with, then add a filter that removes most of the photons, you can end up with a surprisingly small number of photons. Since the photons are distributed according to a Poisson distribution, the error goes down as 1/(sqrt(N). So the more photons you have, the smaller the error.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top