Why Does a Zero Integral Imply a Function Is Zero Almost Everywhere?

  • Thread starter Thread starter Ja4Coltrane
  • Start date Start date
  • Tags Tags
    Integration
Ja4Coltrane
Messages
224
Reaction score
0

Homework Statement



Let (X,m) be a measure space, f:X->[0, infinity] be measurable.

If the integral over X of f is 0, show that f=0 almost everywhere



Homework Equations





The Attempt at a Solution



Suppose that f is nonzero on A, m(A)>0.

I've reduced problem to proving that the following is impossible:

f is positive on a set of nonzero measure and
{x such that f(x)>epsilon} has zero measure for all epsilon greater than zero.

I don't know how to do that though...

Any help?
 
Physics news on Phys.org
Suppose the statement is not true- that there exist a set A, of measure greater than 0, on which f is positive. Then the integral of f over A alone is positive and, since f is never negative, the integral of f over X is not less than the integral of f over A.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top