Why Does Complex Mapping T(z) = Az + B Fail Linearity?

seminum
Messages
12
Reaction score
0
Hello,

Given the complex linear mapping: T(z) = Az + B where A is real and B is complex. However trying to show that T(a * z1 + z2) = a * T(z1) + T(z2) does not work which implies the mapping is not linear? Why does not this rule apply here?

Thanks.
 
Physics news on Phys.org
The map you posted is not a linear map. It's only linear if ##B=0##. The map you posted is called an affine map.

That said, I can probably imagine some books which define "linear map" somewhat different than usual.
 
I see now. Well I found this in the K. Stroud's Advanced Engineering Mathematics on complex analysis. The same transformation when applied to a line, the image is another line in the w-plane, but not sure if the same applies to any other shape.
 
Note that while a Real-valued linear map y=kx only scales , a complex-valued linear map both scales and rotates (e.g., multiply using polars); Complex lines, being 2-dimensional, are Real planes: notice that , for fixed Complex a, the set { ##{az: z \in \mathbb C}##} is the entire complex plane .
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top