RadiationX
- 255
- 0
Why does L' Hopital's fail for this limit? Both the numerator and the denominator are continuous, and both are differentiable.
\lim_{x\rightarrow\infty}\frac{x}{\sqrt{x^2 + 1 }}
Is it "legal" to square the numerator and the denominator to get this:
\lim_{x\rightarrow\infty}\frac{x^2}{x^2 + 1}
Now if i take this \lim_{x\rightarrow\infty}\frac{x^2}{x^2 + 1} and use long divison, i get the following:
\lim_{x\rightarrow\infty} 1 -\frac{1}{x^2 + 1}
and this limit is one.
\lim_{x\rightarrow\infty}\frac{x}{\sqrt{x^2 + 1 }}
Is it "legal" to square the numerator and the denominator to get this:
\lim_{x\rightarrow\infty}\frac{x^2}{x^2 + 1}
Now if i take this \lim_{x\rightarrow\infty}\frac{x^2}{x^2 + 1} and use long divison, i get the following:
\lim_{x\rightarrow\infty} 1 -\frac{1}{x^2 + 1}
and this limit is one.
