Why Does Maxwell's Speed Distribution Law Use Exponential Functions?

Kolahal Bhattacharya
Messages
133
Reaction score
1
In a non-traditional type of derivation of Maxwell's speed distribution for gases,I happen to face the following problem:
They say since P(v_x),P(v_y),P(v_z) are independent,so the combined probability wil be P=P(v_x)P(v_y)P(v_z).
This much is OK.Then they say the only function having the property f(a+b+c)=f(a)f(b)f(c)
is an exponential function.So, consider the P(v_x) as to have exponential dependence P(v_x)=K exp[-L*(v_x)^2].This makes me uncomfortable.Did we have P=P(v_x+P_y+P_z)?I am a bit new to statistical ideas,so really cannot be sure when we said the joint probability is P,it means P=P(v_x+P_y+P_z).
Please help.
 
Physics news on Phys.org
Do you what a partition function is?
 
OK, I do not know.Is P acting as a partition function here?How do we know that?And after all,what does it do?
 
I think the argument holds because

V^2 = V_x^2 + V_y^2 + V_z^2
therefore
P(V^2) = P( V_x^2 + V_y^2 + V_z^2 )
and the next step follows from the independence of V_x, V_y and V_z.
 
Thank you all very much
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top