physicsRookie
- 5
- 0
Show that
\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \infty \qquad a \in \mathbb{N}
Here is my try:
Take a_n = a^{2n+1}/n! . Since
<br /> \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{2(n+1)+1}/\,(n+1)!}{a^{2n+1}/\,n!} = \lim_{n \to \infty} \frac{a^{2}}{n+1} = 0 < 1(D'Alembert test),
the series \sum_{n=0}^\infty a_n is convergent, i.e.<br /> \lim_{n \to \infty} a_n = 0.<br />
Then
<br /> \lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \lim_{n \to \infty} \frac{1}{a_n} = \infty.<br />
Correct? Is there another way to prove it?
Thanks.
\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \infty \qquad a \in \mathbb{N}
Here is my try:
Take a_n = a^{2n+1}/n! . Since
<br /> \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{2(n+1)+1}/\,(n+1)!}{a^{2n+1}/\,n!} = \lim_{n \to \infty} \frac{a^{2}}{n+1} = 0 < 1(D'Alembert test),
the series \sum_{n=0}^\infty a_n is convergent, i.e.<br /> \lim_{n \to \infty} a_n = 0.<br />
Then
<br /> \lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \lim_{n \to \infty} \frac{1}{a_n} = \infty.<br />
Correct? Is there another way to prove it?
Thanks.
Last edited: