ak416
- 121
- 0
Homework Statement
From the book Evans-PDE, p.24, equation (12),
It is written that
C ||D^2f||_{L_{\infty}(R^n)} \int_{B(0,\epsilon)}|\Phi(y)|dy<br /> \\ \leq \begin{cases} C \epsilon^2 |\log{}\epsilon| & (n=2) \\ C \epsilon^2 & (n \geq 3) \end{cases}
How is this?
Homework Equations
\Phi(y) = \begin{cases} -\frac{1}{2\pi}\log{}|y| & (n=2) \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|y|^{n-2}} & (n \geq 3) \end{cases}
for y \in \mathbb{R}^n-0 (the fundamental solution of Laplace's equation).
\alpha(n) is the volume of the unit ball in \mathbb{R}^n.
C is a constant.
The Attempt at a Solution
Take n=3. Then,
\int_{B(0,\epsilon)}|\Phi(y)|dy = C\int_{0}^{\epsilon}\int_{0}^{2\pi}\int_{0}^{2\pi}\frac{1}{r} d\theta d\phi dr
= C \int_{0}^{\epsilon}\frac{1}{r} dr
= C (\log{}(\epsilon)-\log{}(0)) = \infty
What am I doing wrong?
Last edited: