Why Does the Fundamental Solution of Laplace's Equation Cause Infinity in n=3?

  • Thread starter Thread starter ak416
  • Start date Start date
ak416
Messages
121
Reaction score
0

Homework Statement



From the book Evans-PDE, p.24, equation (12),
It is written that

C ||D^2f||_{L_{\infty}(R^n)} \int_{B(0,\epsilon)}|\Phi(y)|dy<br /> \\ \leq \begin{cases} C \epsilon^2 |\log{}\epsilon| &amp; (n=2) \\ C \epsilon^2 &amp; (n \geq 3) \end{cases}

How is this?

Homework Equations



\Phi(y) = \begin{cases} -\frac{1}{2\pi}\log{}|y| &amp; (n=2) \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|y|^{n-2}} &amp; (n \geq 3) \end{cases}
for y \in \mathbb{R}^n-0 (the fundamental solution of Laplace's equation).

\alpha(n) is the volume of the unit ball in \mathbb{R}^n.

C is a constant.

The Attempt at a Solution



Take n=3. Then,

\int_{B(0,\epsilon)}|\Phi(y)|dy = C\int_{0}^{\epsilon}\int_{0}^{2\pi}\int_{0}^{2\pi}\frac{1}{r} d\theta d\phi dr

= C \int_{0}^{\epsilon}\frac{1}{r} dr

= C (\log{}(\epsilon)-\log{}(0)) = \infty

What am I doing wrong?
 
Last edited:
Physics news on Phys.org
I think you got your Jacobian transformation wrong. If memory serves:
<br /> dxdydz=r^{2}\sin\theta drd\theta d\phi<br />
 
ya you're right. I didn't account for the change of coordinates. thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top