Why does the waveform change below 18MHz in electron spin resonance experiments?

Dogsnake
Messages
1
Reaction score
0

Homework Statement



This isn't exactly a homework question, but my lab partner and I came across a phenomena whilst doing an electron spin resonance experiment, and I was wondering if anyone could help explain it.

The sample we found electron spin resonance for is 1,1-diphenyl-2-picrylhydrazil.

A glass phial containing the sample was placed between two Helmholtz coils, so that the B field was uniform, and within the output coil of a radio frequency oscillator. The drop in voltage due to resonance was measured by an oscilloscope in X-Y mode.

Whilst the radio frequency oscillator was set at 18-35MHz, the waveform shown by the oscillator at resonance was the first shown in the attached file (this was the expected shape). Below a frequency of about 18MHz for the radio frequency oscillator, the waveform looked like the second shown below (excuse my drawing skills, but that's pretty much what it looked like)

The question: Why has this happened?

A qualitative explanation would be fine, as we don't plan on doing experiments on the anomaly itself, we just need to know what's happening. I've spent a while perusing relevant textbooks and can't find a reference to it.

Thank you.
 

Attachments

  • resonance shape.jpg
    resonance shape.jpg
    12.3 KB · Views: 533
Physics news on Phys.org
What voltage are you measuring? You have a background B-field for a reference orientation, and you are perturbing the system with RF, much like NMR (MRI), no? Do you also have a pickup coil?

What does it mean to set an oscillator at 18-35MHz?

I will assume that X is input and Y is output. You can immediately determine from your Lissajou patterns that the output frequency of the top one is doubled, and the output frequency of the bottom one is tripled. I can't understand exactly what you're doing or measuring, though, so I don't know why you get that extra node.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top