I Why Don't L2 and Ly Commute When L2 and Lx Do?

dyn
Messages
774
Reaction score
63
Hi.
To show that [ L2 , L+ ] uses the following commutators [ L2 , Lx ] = 0 and [ L2 , Ly ] = 0 . But if [ L2 , Lx ] = 0 this shows that L2 and Lx have simultaneous eigenstates ; but then should L2 and Ly not commute ?
Thanks
 
Physics news on Phys.org
dyn said:
Hi.
To show that [ L2 , L+ ] uses the following commutators [ L2 , Lx ] = 0 and [ L2 , Ly ] = 0 . But if [ L2 , Lx ] = 0 this shows that L2 and Lx have simultaneous eigenstates ; but then should L2 and Ly not commute ?
Thanks
No. If A and B commute so have a common eigenbasis and B and C commute so have a different common eigenbasis, it does not follow that A and C commute and have a common eigenbasis.
 
  • Like
Likes dyn
Thanks. So L2 and Lx have a common eigenbasis as the 2 operators commute and L2 and Ly have a different common eigenbasis. But as Lx and Ly do not commute these 2 sets of eigenbases can never be the same ?
 
dyn said:
Thanks. So L2 and Lx have a common eigenbasis as the 2 operators commute and L2 and Ly have a different common eigenbasis. But as Lx and Ly do not commute these 2 sets of eigenbases can never be the same ?

A spin-1/2 system is useful because the operators are simple 2x2 matrices. I suggest you work through this example for these AM operators.

Note that the identity operator, ##I##, commutes with everything (and every vector is an eigenvector of ##I##). So, ##I## has a shared eigenbasis with all operators that have an eigenbasis (such as Hermitian operators).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top