Proving the group homomorphism SO( 2 , 1) \cong SL( 2 , \mathbb{ R } ) is quite complicated and requires good understanding of the conformal group. And, since I’ve just received a complain about my “sophisticated” replies on PF, I will show you how to prove the Lie algebra isomorphism so( 2 , 1) \cong sl( 2 , \mathbb{ R } ) which is quite easy, and then I will improve on that by considering the transformations of the two groups.
The Lie algebra of SO( 2 , 1) is
[ M_{ a b } , M_{ c d } ] = \eta_{ b c } M_{ a d } - \eta_{ b d } M_{ a c } + \eta_{ a d } M_{ b c } - \eta_{ a c } M_{ b d } , \ \ (1)
with a , b = 0 , 1 , 2 and \eta = \mbox{ diag } ( -1 , +1 , -1 ).
Now, we introduce the following combinations of generators
P = M_{ 0 2 } - M_{ 0 1 } , \ \ K = M_{ 0 2 } + M_{ 0 1 } ,
and rename the remaining one as
D = M_{ 2 1 } .
It is now easy to show that, in terms of the generators P , K and D, the Lie algebra (1) becomes
[ D , P ] = - 2 P , \ \ \ [ D , K ] = 2 K , \ \ \ [ P , K ] = D . \ \ (2)
To show that the algebra of SL( 2 , \mathbb{ R } ) is exactly of the form (2), recall that every group element g \in SL( 2 , \mathbb{ R } ) can be parameterized as
<br />
g( \epsilon_{ 1 } , \epsilon_{ 2 } , \epsilon_{ 3 } ) = \left( \begin{array}{rr} 1 + \epsilon_{ 1 } & \epsilon_{ 2 } \\ \epsilon_{ 3 } & \frac{ 1 + \epsilon_{ 2 } \epsilon_{ 3 } }{ 1 + \epsilon_{ 1 } } \end{array} \right) . \ \ (3)<br />
Close to the identity element, i.e., to first order in the infinitesimal parameters \epsilon_{ i }, (3) becomes
<br />
g( \epsilon_{ 1 } , \epsilon_{ 2 } , \epsilon_{ 3 } ) = \left( \begin{array}{rr} 1 + \epsilon_{ 1 } & \epsilon_{ 2 } \\ \epsilon_{ 3 } & 1 - \epsilon_{ 1 } \end{array} \right) .<br />
Using this, the infinitesimal generators can be deduced from
X_{ i } = \frac{ \partial g }{ \partial \epsilon_{ i } } |_{ ( 0 , 0 , 0 ) } .
They are
X_{ 1 } = \left( \begin{array}{rr} 1 & 0 \\ 0 & - 1 \\ \end{array} \right) , \ X_{ 2 } = \left( \begin{array}{rr} 0 & 1 \\ 0 & 0 \end{array} \right) , \ X_{ 3 } = \left( \begin{array}{rr} 0 & 0 \\ 1 & 0 \end{array} \right) .
Thus, by simple matrix multiplications we find the algebra
[ X_{ 1 } , X_{ 2 } ] = 2 X_{ 2 } , \ \ [ X_{ 1 } , X_{ 3 } ] = - 2 X_{ 3 } , \ \ [ X_{ 2 } , X_{ 3 } ] = X_{ 1 } .
This is exactly the Lie algebra (2) of the group SO( 2 , 1). This means that we have the Lie algebra isomorphism so( 2 , 1) \cong sl( 2 , \mathbb{ R } ).
Notice that the algebra (2) has the following differential realizations on functions of single real variable t \in \mathbb{ R },
P = \frac{ d }{ d t } , \ \ K = t^{ 2 } \frac{ d }{ d t } , \ \ D = t \frac{ d }{ d t } . \ \ (4)
In fact, these are the generators of the conformal group C( 1 , 0 ) in (1 + 0) dimensional space-time: D (the generator of the non-compact subgroup SO(1,1) \subset SO(2,1)) generates scale transformation on the coordinate t, P (the Hamiltonian) generates time translation, and K generates conformal boosts.
So, on the level of algebras, we have the following isomorphism
SO( 2 , 1) \cong C( 1 , 0 ) \cong SL( 2 , \mathbb{ R } ) .
This actually a special case of an isomorphism between the Lorentz group SO( 2 , n ) in (n + 2) dimensions and the conformal group in n dimensions C( 1 , n - 1 ). For more details on this and other aspects of the conformal group C( 1 , n - 1 ), see (in particular post#6)
www.physicsforums.com/showthread.php?t=172461
So, under C( 1 , 0 ) or (which is the same thing) SO(2,1), the coordinate t transforms (infinitesimally) according to (see Eq(1.12) in the link)
C( 1 , 0 ) : \ t \rightarrow \bar{ t } = t + \beta + 2 \alpha t - c t^{ 2 } . \ \ (5)
Finally, we will now show that the group SL( 2 , \mathbb{ R } ) act on t in exactly the same way C( 1 , 0 ) does, i.e., starting from SL( 2 , \mathbb{ R } ) transformations and arriving at (5). This sounds strange, how can a 2 \times 2 matrix act on a single variable t? This example will show you that this can actually be done.
SL( 2 , \mathbb{ R } ) acts naturally on 2-dimensional real vector space. Therefore, under an infinitesimal SL( 2 , \mathbb{ R } ) transformations, a 2-component vector transforms according to
<br />
\left( \begin{array}{C} \bar{ V }_{ 1 } \\ \bar{ V }_{ 2 } \end{array} \right) = \left( \begin{array}{rr} 1 + \alpha & \beta \\ c & 1 - \alpha \end{array} \right) \ \left( \begin{array}{C} V_{ 1 } \\ V_{ 2 } \end{array} \right) , \ \ (6)<br />
where \alpha , \beta and c are all real infinitesimal parameters, i.e., \alpha^{ 2 } = c \beta \approx 0. This ensures that the determinant of the transformation matrix is one, as it should be for the group SL( 2 , \mathbb{ R } ).
Now, if we define t = V_{ 1 } / V_{ 2 }, and divide the two equations in (6), we arrive at
t \rightarrow \frac{ ( 1 + \alpha ) t + \beta }{ ct + 1 - \alpha } \approx t + \beta + 2 \alpha t - c t^{ 2 } ,
which is eq(5) again. Of course, this is not a rigorous proof of the homomorphism SO( 2 , 1) \cong SL( 2 , \mathbb{ R } ), but close enough for PF.
Sam