LusTRouZ
- 3
- 0
I'm not understanding why my answer is wrong
\inttan^3(x) dx
This is the solution I've been getting for this problem, but I notice you get a different answer when you let u = tan(x) and du = sec^2(x) dx
tan^2(x) = (sec^2(x) - 1)
\inttan(x) (sec^2(x) - 1) dx
\inttan(x) sec^2(x) - \inttan(x) dx
. // u = sec(x) du = sec(x)tan(x) dx
\intu du - \intsin(x) dx/cos(x)
. // z = cos(x) zu = -sin(x) dx
\intu du - \int-zu/z
(1/2)u^2 - (-ln |z|)
(1/2)sec^2(x) + ln |cos(x)|
Homework Statement
\inttan^3(x) dx
This is the solution I've been getting for this problem, but I notice you get a different answer when you let u = tan(x) and du = sec^2(x) dx
Homework Equations
tan^2(x) = (sec^2(x) - 1)
The Attempt at a Solution
\inttan(x) (sec^2(x) - 1) dx
\inttan(x) sec^2(x) - \inttan(x) dx
. // u = sec(x) du = sec(x)tan(x) dx
\intu du - \intsin(x) dx/cos(x)
. // z = cos(x) zu = -sin(x) dx
\intu du - \int-zu/z
(1/2)u^2 - (-ln |z|)
(1/2)sec^2(x) + ln |cos(x)|
Homework Statement
Homework Equations
The Attempt at a Solution
Last edited: