LagrangeEuler
- 711
- 22
Homework Statement
Form unitary matrix from eigen vectors of ##\sigma_y## and using that unitary matrix diagonalize ##\sigma_y##.
<br /> \sigma_y=<br /> \begin{bmatrix}<br /> 0 & -i & \\<br /> i & 0 & \\<br /> <br /> \end{bmatrix}[/B]
Homework Equations
Eigen vectors of ##\sigma_y## are
<br /> \vec{X}_1=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 \\<br /> i \\<br /> <br /> \end{bmatrix}
and
<br /> \vec{X}_2=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 \\<br /> -i \\<br /> <br /> \end{bmatrix}
The Attempt at a Solution
I am not sure, where I am making a mistake. Unitary matrix ##U## is defined by
<br /> U=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 & 1 & \\<br /> i & -i & \\<br /> <br /> \end{bmatrix}
whereas
<br /> U^{\dagger}=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 & -i & \\<br /> 1 & i & \\<br /> <br /> \end{bmatrix}.
And somehow
##U \sigma_y U^{\dagger}##
is not diagonal. Is there any explanation? Where I am making a mistake?
[/B]