vanhees71 said:
The good news is that this is a question irrelvant to physics, because physics is all about reprducible objective phenomena in nature an nothing else. Religion, including philosophical speculation about "the meaning of it all", are not part of physics and can be left to a physicist's (spare) free time ;-)).
As you certainly know by now, I disagree. I will not repeat my reasons because you have already seen them several times.
vanhees71 said:
I've never understood the hype about BM. You evaluate with more or less satisfaction some unobservable "trajectories" from a highly unintuitive non-local theory. So what?
You cannot understand the hype about BM if you never seriously ask yourself (in spare time if you want) what is happening when we don't observe. As long as this question is irrelevant for you, BM is not something you should care about.
vanhees71 said:
There is no difference between the "high-energy and condensed-matter spirit of QFT". Since Kadanoff and K. Wilson it's pretty clear that all our relativistic QFTs are effective theories with validity up to some scale beyound which you don't resolve the physics anymore to get a description of the relevant and observable degrees of freedom.
High-energy physicists know it, but many of them still don't accept it wholeheartedly. For instance, many of them still claim that we "don't know how to quantize gravity", forgetting that we do understand quantum gravity pretty well if effective theory is all we should really care about.
Another difference: For condensed-matter physicists, symmetry is nothing but a practical tool to simplify calculations. For high-energy physicists, symmetry may also be a deep fundamental principle which is a key for understanding physics at the deepest possible level.
vanhees71 said:
This is pretty much the same in condensed-matter physics, and only because often there are no divergences in non-relativistic QFT (used in condensed-matter physics) doesn't mean that you don't need to renormalize. Quite to the contrary the pertinent techniques like the functional renormalization-group approach become more and more important in both non-relativistic and relativistic many-body physics.
Of course, techniques are the same. But I am not talking about techniques. I am talking about "spiritual" things which you might consider "irrelevant". Like "What does it all mean?", or "How to search for BSM theories when all LHC data are compatible with the SM?". The latter question is an important part of the mainstream research, even if, strictly speaking, should be considered irrelevant for physics.
vanhees71 said:
As I stressed above, the sensibility of implementing an artificial ad-hoc addition to the interpretation of QT in the spirit of BM has never become understandable to me, precisely for the reason you give yourself: It doesn't provide any deeper insight for the theoretical description of what we "actually see", and that's the only part of our perception of nature that's, by definition, relevant to the natural sciences.
Perhaps you misunderstood me. I consider it less relevant than before because BM used to be about electrons and photons, while now, in my reinterpretation, it is about some more fundamental particles which we don't (yet) see in experiments. (If you will ask me what's the point of particles that we don't see in experiments, my answer is: What's the point of strings? What's the point of supersymmetric partners?)