I don't know, what you are precisely referring to. An anomaly is defined as a symmetry valid in a classical theory, which implies the conservation of the corresponding current. For the axial U(1) symmetry the current is
$$j_5^{\mu}=\mathrm{i} \overline{\psi} \gamma^5 \gamma^{\mu} \psi,$$
and I guess the ##5## is indeed just due to the appearance of the ##\gamma^5=\mathrm{i} \gamma^0 \gamma^1 \gamma^2 \gamma^3## Dirac matrix in the current. It's just a name with not much deeper reason. Now it happens that when quantizing the theory, you cannot keep all symmetries.
For the axial U(1) anomaly it's intuitively understandable what happens. When calculating one-loop corrections to the three-point vertex function with one axial and two vector currents you have a linear divergence. Thus you have to regularize this loop integral. If you like to preserve the symmetry you should find a regulator that doesn't destroy the symmetry. You cannot find such a regulator for the axial U(1) symmetry. The usual suspects don't work: A momentum cutoff destroys the symmetry, because a scale enters, and chiral symmetry doesn't easily respect a scale. The same holds for Pauli-Villars: You have to introduce massive fermions, and these don't respect the chiral symmetry. Dimensional regularization fails, because you don't know what to do with the generically four-dimensional object ##\gamma^5##.
Indeed, a closer analysis shows that you can either keep the vector current conserved or the axial current or any linear combination thereof. You can however never preserve both. Physics tells you which current to conserve usually. E.g., if you have QED the vector current should be conserved, because otherweise you destroy electromagnetic gauge symmetry, because that's the current the em. field couples to. Thus you must break the conservation of the axial U(1).
I have a section on anomalies in my QFT manuscript (Sect. 7.6):
http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf