Why Is the Dam Wall Area Constant in Fluid Pressure Calculations?

AI Thread Summary
The discussion centers on understanding the application of fluid pressure calculations in a dam setting, specifically the equation δF = ρgy*δy. The confusion arises regarding why the area is considered constant while integrating the force on the dam wall, despite pressure changing with depth. It is clarified that pressure is defined as a function of depth, P(y) = ρg*y, and the differential force is derived by multiplying this pressure by an area element. The commutative property of multiplication allows for flexibility in the arrangement of terms, but using δF = ρg*dy*dy is incorrect. Ultimately, the explanation reinforces the correct approach to calculating force on a dam wall using fluid pressure principles.
Enzo
Messages
17
Reaction score
0
Heya folks at Physics forums.

I'm having a bit of a problem with the theory of maths behind a simple formula used in F.M. This is purely a problem dealing with with mathematics rather than fluid dynamics. You'll have to excuse me, I really am a bit slow when it comes to these things, and right now I'm feeling like a complete idiot.


The situation is a basic dam setting. There's a dam wall, and one side of the dam is filled with water. The equation is used in finding the total force created by the water on dam wall.

δF = ρgy*δy

This equation stems from F=PA, where A=y*x, where x=1 in this scenario.
This is later on used with an integration to find the entire force on the dam wall:

(I'm using (S) as the integration sign)

F = ρg (S)y*δy, with the limits being the entire dam wall length in the y direction

What I don't understand is:
Why does the equation small change the length of the wall in respect to the area, rather than to small change the length down the wall in terms of pressure (eg, since pressure changes, why not small change the pressure and keep the dam wall area constant? which would give the equation: δF = ρgδy*y, then integrate that formula over the entire dam wall depth) I know that it would equal the same thing, but still..

Also, since the pressure on the wall changes according to depth, why isn't the depth in the pressure part small changing too? Eg, δF = ρgδy*δy

I apologize if this post is too basic(or stupid), but I'm a bit confused here. Anything you can say that would help me understand would be greatly appreciated.
 
Engineering news on Phys.org
It might help if we first write the pressure as a function of the depth, y:

P(y) = rho*g*y

then to get the differential force, you need to multiply this pressure by an element of area,

dF = P(y) * dA = P(y)*1*dy = rho*g*y * dy

This gets your original form that you seemed to be questioning. As to whether you should write this as rho*g*y*dy or rho*g*dy*y, it really makes no difference since the multiplications are commutative.

I hope this same development also explains why it should not by rho*g*dy*dy; that would be completely wrong.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top