fxdung said:
So the rules of multiplication of negative or/and positive numbers lead to distribute law but not the distribute law lead to the rules of multiplication in your explanation?
Yes and no. The distributive law is all which connects addition and multiplication.
Ok, let's do it formally. Say we want to solve ##(-5)\cdot (-7-8)##.
\begin{align*}
(1) \quad -5 \text{ is the solution of } &\quad x+5=0& 15\cdot x+75=0\\
(2) \quad -7 \text{ is the solution of } &\quad y+7=0 & 5y + 35 = 0\\
(3) \quad -8 \text{ is the solution of } &\quad z+8=0 & 5z+40=0
\end{align*}
With the help of the distributive law we get
\begin{align*}
0 &= (x+5)(y+7) \\
&= xy +7x+5y + 35\\
&= xy +7x \text{ by (2) } \\
&\text{ and equally }\\
0&= (x+5)(z+8)\\
&= xz +8x + 5z + 40\\
&= xz +8x \text{ by (3) }
\end{align*}
So ##\text{ by (1) }\quad 0=xy+xz + 7x + 8x = xy+xz + 15x = xy+xz + (-75)## which means ##xy+xz = 75##.
As ##(-5)\cdot (-7-8) = (-5)\cdot (-15) = x\cdot (y+z)=xy+xz##, we get with both ##(-5)\cdot (-15) = 75##.
So the distributive law can be used to show ##(-1) \cdot (-1) = +1## and similar the other rules.
If we vice versa have the rules for multiplying negative and positive numbers, we can show that the distributive law must hold:
##(-5)\cdot (-7-8)= 75 = 35+40 = (-5)\cdot (-7) + (-5)\cdot (-8)## or ##x\cdot (y+z) = xy +xz##.