MadMax
- 98
- 0
Using the Einstein summation convention...
Why is
\mathbf{a}^2 \mathbf{b}^2
not the same as
3 a_i a_j b_j b_i = 3(\mathbf{a} \cdot \mathbf{b})^2
given that
\mathbf{a}^2 = a_i \cdot a_i = a_i a_j \delta_{ij}
\mathbf{b}^2 = b_i \cdot b_i = b_i b_j \delta_{ij}
and
\delta_{ij} \delta_{ji} = 3
-> \mathbf{a}^2 \mathbf{b}^2 = a_i a_j \delta_{ij} b_i b_j \delta_{ij} = 3(\mathbf{a} \cdot \mathbf{b})^2
??
Any help would be much appreciated.
Why is
\mathbf{a}^2 \mathbf{b}^2
not the same as
3 a_i a_j b_j b_i = 3(\mathbf{a} \cdot \mathbf{b})^2
given that
\mathbf{a}^2 = a_i \cdot a_i = a_i a_j \delta_{ij}
\mathbf{b}^2 = b_i \cdot b_i = b_i b_j \delta_{ij}
and
\delta_{ij} \delta_{ji} = 3
-> \mathbf{a}^2 \mathbf{b}^2 = a_i a_j \delta_{ij} b_i b_j \delta_{ij} = 3(\mathbf{a} \cdot \mathbf{b})^2
??
Any help would be much appreciated.
Last edited: