Why is the logarithm of the number of all possible states of

AI Thread Summary
The discussion centers on the mathematical definition of temperature in relation to the number of accessible states (Ω) of a system, expressed as the derivative of the natural logarithm of Ω with respect to energy. It highlights the challenge of differentiating log(Ω) due to its discrete nature, questioning the validity of approximating it as a continuous function. The conversation also touches on the flow of energy between systems, emphasizing that energy moves from higher to lower temperatures to increase the combined system's accessible states. Additionally, it acknowledges the ambiguity in defining a "best" approximation for functions derived from discrete values. Ultimately, the dialogue reflects the tension between rigorous mathematical definitions and practical applications in physics.
Kiarash
Messages
9
Reaction score
0
Temperature of a system is defined as
$$\left( \frac{\partial \ln(\Omega)}{ \partial E} \right)_{N, X_i} = \frac{1}{kT}$$Where Ω is the number of all accessible states (ways) for the system. Ω can only take discrete values. What does this mean from a mathematical perspective? Many people say we have 10^23 particles so Ω is almost continuous function of energy. Why is 10^23 a nice number but 1000 is not? When can one be sure they can differentiate ln(Omega)?

If you agree with me, do you know an alternative accurate definition for temperature?
 
Physics news on Phys.org
There's no better definition of temperature. Ω is only approximately equal to the number of accessible states. I don't see why that bothers you.

When two systems are in contact with each other, energy will flow in the direction that increases the number of accessible states of the combined system. A fairly simple argument shows that if we define temperature this way, then energy is flowing from higher temperature to lower. We define Ω and T this way to be able to make this argument.
 
@Fredrik Thank you for your reply. log[Ω] can only take discrete values; so it is ambiguous what is its derivative. I mean there is infinitely many functions that have the same values as Ω has, but they have different derivative. What does it mean when we differentiate log[Ω]; it is not trivial.
 
OK, so the main issue is that there's more than one way to approximate a function defined on a set of integers by a function defined on an interval. I suppose the answer has to be that all reasonable ways to define what we mean by a "best" approximation (e.g. for some n, the nth-degree polynomial that's the best approximation in the least squares sense) give us functions that are empirically indistinguishable from each other.

I haven't tried to verify this, but I also don't think it's necessary. There's obviously some ambiguity in a word like "reasonable", but this is to expected in arguments that are used to find the theory that we're going to use. Such arguments don't have to be rigorous, since the goal is to guess what definitions will be useful, not to prove that the theory is right.
 
Physicists are well-known for doing things that make mathematicians tear their hair out, but that somehow "work", anyway. :-p
 
  • Like
Likes Kiarash and jim mcnamara
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top