A Why Is the Mixed SU(2) Term Invariant in Scalar Multiplet Models?

Ramtin123
Messages
22
Reaction score
0
Consider two arbitrary scalar multiplets ##\Phi## and ##\Psi## invariant under ##SU(2)\times U(1)##. When writing the potential for this model, in addition to the usual terms like ##\Phi^\dagger \Phi + (\Phi^\dagger \Phi)^2##, I often see in the literature, less usual terms like:
$$\Phi^\dagger T^a \Phi \ \Psi^\dagger t^a \Psi $$
where ##T^a## and ##t^a## are SU(2) generators in different representations.
See for an example eqn (4) in this paper

I am wondering why the above term is invariant under an SU(2) transformation?

Any helps or comments would be appreciated.
 
Physics news on Phys.org
PS: I was told that after a transformation of the form ##\Phi \to U \Phi## and similarly ##\Psi \to u \Psi##, we get:
$$\Phi ^\dagger T^a \Phi \to \Phi ^\dagger U^{-1} T^a U \Phi = ad(U)_b^a \ \Phi ^\dagger T^b \Phi$$
and similarly, for the term involving ##\Psi##. where ##ad(U)## is the adjoint representation of SU(2).

But I cannot work out how to eliminate the adjoint representations in the above expression to get back to the original term in the Lagrangian.
 
Ramtin123 said:
Consider two arbitrary scalar multiplets ##\Phi## and ##\Psi## invariant under ##SU(2)\times U(1)##. When writing the potential for this model, in addition to the usual terms like ##\Phi^\dagger \Phi + (\Phi^\dagger \Phi)^2##, I often see in the literature, less usual terms like:
$$\Phi^\dagger T^a \Phi \ \Psi^\dagger t^a \Psi $$
where ##T^a## and ##t^a## are SU(2) generators in different representations.
This is the scalar product of the two adjoint vectors

V_{a} \equiv \Psi^{\dagger}T_{a}\Psi, \ \ \mbox{and} \ \ v_{a} \equiv \psi^{\dagger}t_{a}\psi

Now, if \Psi \to U(\alpha) \Psi = e^{-i\alpha^{a}T_{a}}\Psi,\psi \to u(\alpha)\psi = e^{-i\alpha^{a}t_{a}}\psi, then V_{a}v_{a} \to \Psi^{\dagger} \left( U^{-1}T_{a}U \right)\Psi \ \psi^{\dagger}\left( u^{-1}t_{a}u\right) \psi. Now, if you expand U^{-1}, U, u^{-1} and u and use the algebra, you find U^{-1}(\alpha)T_{a}U(\alpha) = D_{ab}(\alpha)T_{b},u^{-1}(\alpha)t_{a}u(\alpha) = D_{ac}(\alpha)t_{c}, where D_{bc}(\alpha) = \left( e^{-i\alpha^{a}J_{a}}\right)_{bc} = D_{cb}(- \alpha), and (J_{a})_{bc} = - i \epsilon_{abc}. So, if you substitute these, you find V_{a}v_{a} \to D_{ab}(\alpha)D_{ac}(\alpha)V_{b}v_{c} = \left( D(- \alpha)D(\alpha)\right)_{bc} V_{b}v_{c} = \delta_{bc}V_{b}v_{c} = V_{c}v_{c}.
 
  • Like
Likes odietrich and Ramtin123
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top