Why is the solution in the form of Ce^kx ?

  • Thread starter Thread starter joo
  • Start date Start date
  • Tags Tags
    Form
joo
Messages
8
Reaction score
0
Why is the solution to linear differential equations with constant coefficients sought in the form of Ce^kx ?

I have heard that there is linear algebra involded here.

Could you please elaborate on this ?
 
Mathematics news on Phys.org
Once you provide initial conditions, those differential equations will define a unique solution (Since in principle you can just numerically integrate it).
So once you have n (the order of the DE) linearly independent solutions (and thus are able to satisfy the initial conditions), you have a unique solution.

This is my understanding, there is probably some more technical way to put it.
 
The solution of a first-order linear DE with constant coefficients is an exponential function follows directly from the definition of an exponential function.

For an n'th order DE, either you can convert it into a system of n first-order DE's, or the fundamental theorem of algebra says that you can always factorize it as ##(\frac{d}{dx} - a_1)(\frac{d}{dx} - a_2)\cdots(\frac{d}{dx} - a_n)y(x) = 0##.
 
  • Like
Likes 1 person
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top