I Why L=L(v^2) in inertial reference system?

AI Thread Summary
The discussion centers on the equation L=L(v^2) within the context of inertial reference systems and the Galilean principle of relativity. It emphasizes that the properties of space are consistent in both directions, suggesting that only the magnitude of velocity, |v|, is relevant. The relationship f(|v|)=f(√(v^2))=g(v^2) indicates that v^2 is the critical factor in this context. This understanding clarifies the role of velocity in the equation. Overall, the conversation highlights the significance of velocity magnitude in inertial frames.
Dr turtle
Messages
2
Reaction score
0
TL;DR Summary
Why Landau pointed out that Lagrange function shall only be affected by v square in inertial reference system?
Why he said that beacause space's propertiy is the same in both direction, so L=L(v^2), or do I misunderstand him incorrectly?
btw this conclusion appears in somewhere like page 5 and its about Galilean principle of relativity.
 
Physics news on Phys.org
The direction should not matter, so only magnitude of velocity |v| should matter.
f(|v|)=f(\sqrt{v^2})=g(v^2)
So we can say only v^2 matters.
 
That's really helpful, lots of thanks
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top