No. I assume you mean the Shell Theorem as stated, for example, on this Wiki page:
http://en.wikipedia.org/wiki/Shell_theorem
The theorem basically says two things:
(1) If you're on the outside of (i.e., above, further from the center than) a spherically symmetric mass distribution, you feel the gravity of the entire mass as if it were concentrated at the center of the sphere.
(2) If you're on the inside of (i.e., below, closer to the center than) a spherically symmetric mass distribution, you feel *no* net gravity from it, because the contributions from all different parts of it cancel out.
If you're in the interior of an idealized spherically symmetric body (like an ideal non-rotating spherical Earth), both (1) and (2) above apply. (2) applies to the part of the body that's above you, and says that that part contributes nothing to the gravity you feel. (1) applies to the part of the body that's below you, and says that you feel the gravity of that part normally, i.e., just as if the mass that's below you were concentrated at the center.
As you descend through the body, more and more of its mass is above you (and so doesn't contribute to the gravity you feel), and less and less is below you. So the gravity you feel gets less and less, reaching zero just as you reach the center.