Why Use Absolute Value for Squaring in Wave Function Normalization?

Niles
Messages
1,834
Reaction score
0

Homework Statement


Hi all.

I have a wave function given by

\Psi \left( {x,0} \right) = A\frac{x}{a}

I have to normalize it, which is OK. But in the solution to this problem, the teacher uses |A|2 when squaring A. Is there any particular reason for this? I mean, if you square the constant, then why bother with the signs?

I thought that it maybe because A is a complex constant, but still - I cannot see what difference it would make taking the absolute value of A before squaring.
 
Physics news on Phys.org
If A is not real, then |A|2 and A2 are different. Allowing for A to be complex is the only reason I can think of for including the absolute value signs.
 
For complex numbers, |z|^2 is not the same as z^2. Suppose z = 1 + i. Then |z| = sqrt(2), so |z|^2 = 2. But z^2 = 1 + 2i + i^2 = 2i. |z|^2 always gives a nonnegative real number, which is required to interpret the wave function as a probability density.
 
Great, thanks to both of you.
 
I have another question related to this.

When I find the constant A, then am I finding the complex number A or the modulus of the complex number A, |A|?
 
Last edited:
It's |A|.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top