##V(x)=0## corresponds to a free particle and it can be solved analytically in momentum space. Suppose your initial wavepacket is ##|\psi_0\rangle##. The wavepacket at time ##t## is ##|\psi(t)\rangle = \exp(\frac{-iHt}{\hbar}) |\psi_0\rangle## where ##H = p^2/(2m)##. Then use the completeness relation in momentum basis
$$
|\psi(t)\rangle = \int dp' \hspace{2mm} e^{\frac{-iHt}{\hbar}} |p'\rangle \langle p'|\psi_0\rangle
$$
Now just plug in the initial Gaussian wavepacket in momentum space ##\psi(p,0) =\langle p|\psi_0\rangle## and compute the integral. From this point on, it's up to you whether you want to express the final state in position or in momentum basis. The momentum basis representation is easy, you just need to calculate
$$
\langle p|\psi(t)\rangle = \int dp' \hspace{2mm} \langle p|e^{\frac{-iHt}{\hbar}} |p'\rangle \langle p'|\psi_0\rangle
$$
Since ##e^{\frac{-iHt}{\hbar}} |p'\rangle = e^{\frac{-i\hat{p}^2t}{2m\hbar}} |p'\rangle = e^{\frac{-ip'^2t}{2m\hbar}} |p'\rangle##, the above equation becomes
$$
\langle p|\psi(t)\rangle = \int dp' \hspace{2mm} e^{\frac{-ip'^2t}{2m\hbar}} \langle p|p'\rangle \langle p'|\psi_0\rangle = e^{\frac{-ip^2t}{2m\hbar}} \langle p|\psi_0\rangle
$$