Windmill boat on river, no wind

AI Thread Summary
In a windless scenario, a windmill boat on a fast-flowing river can utilize its relative wind to achieve speeds greater than the river's current, but only up to a limit of about half the river's speed. The energy for the boat's movement is derived from the river, while the power comes from the windmill's interaction with the water propeller. The windmill creates drag, which must be countered by the river's force, leading to a complex balance of energy transfer. Once the boat exceeds the river's speed, it faces additional drag from the water, complicating its ability to maintain that speed. Ultimately, the windmill cannot generate energy from still air, and its efficiency in converting wind energy to propulsion is crucial for the boat's performance.
Peter A. Sharp
Messages
9
Reaction score
0
Assume a windmill boat is drifting down a fast flowing river during windless conditions. It uses its relative wind to outrun the speed of the river. What is the correct way to describe this situation in terms of energy and power? Can we say that its energy is derived from the river but its power is derived from its relative wind? Would that be correct terminology? If not, what?
 
Engineering news on Phys.org
Wouldent the windmill act as a big drag force and slow the boat down relative to the river?
 
A windmill boat uses a windmill to spin a water propeller. They can sail directly into the wind. So in this case, if we use the river as the frame of reference, the windmill boat is sailing normally relative to the river and sail down river faster than the river. The speed will be no more than about half the speed of the river. So from the shoreline frame of reference, the windmill boat will be seen to sail down river at the speed of the river plus roughly half the speed of the river.
 
I don't see how the windmill would make the boat go any faster than if it had no windmill. The force applied to the windmill would equal the force the propeller applies to the water, no? So wouldn't these equal but opposite forces cancel each other out?
 
Well, I tried to do a search on windmill boats but could find none, Ill have to take your word on how they work until you can provide a link explaining it. I find that to be very neat if it does actually do what you say it does. Power is defined as the amount of work per unit time, so I don't see why you mentioned power from the sail but energy from the river. I am probably not right, but I will give this a shot. The water boat system has energy relative to the observer on the shore. Neglecting the windmill for a moment, the boat would move at the same speed as the river. So it would have the same veloctiy. Its energy would be 1/2 mv^2. Obviously, the river had to loose that same amount of energy to give the boat that additional amount of energy. Note that hull friction is not an issue here because the boat is drifting and not pushing its way through the water. Now put in the windsail. Its going to see drag from the wind resistance, and that in turn is going to turn the sail, which via a shaft and gearing system will turn a propellor. Now that amount of drag to turn the propellor must be overcome by the river too. The river is pushing the boat forwards at at-most a speed equal to the river. And if you consider the drag in turning the windmill as a constant, then that amount of work the river lost in addition would be w=F(drag)*distance. You said it would give you at most 1/2 the speed of the river, I think that would depend on how efficent the windmill is in sending its energy to the propellor. Now I am really not sure what I am talking about and I am just making a lot of simplified guesses. Another thing to consider is that the windmill can't create energy outa no where. So I would think that the boat would speed up, slow down, speed up over and over again, because the river will cause the windmill to turn and create a small amount of thrust for a small peroid of time. But once the boat sails faster than the river, the river can no longer give it any more push that the speed with which the river flows. So now that drag from the windmill can't be compensated by the river, and it will slow down to the rivers speed again, and the process will repeat. Also, once the boats going faster than the river, the water relative to the boat has to be pushed out of the way to go faster than the rivers current, its not drifting along with the same velcoity as the river, so the hull will cause additional drag that the windmill propellor has to overcome to hold its faster than river speed. But I don't think the air can give any energy to the boat, if the air is STILL, then there is no energy in it to give up in the first place, it can only steal energy away when something moving through it creates turbulence. I am done guessing, hopefully someone smart can supply a real anwser now :-)
 
Last edited:
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top