with problem with matrices, reflections, rotations

  • Thread starter Thread starter dellatorre
  • Start date Start date
  • Tags Tags
    Matrices Rotations
dellatorre
Messages
5
Reaction score
0
Looking for help with a problem I'm working on:

"Show that matrix
[0 -1 0]
[-1 0 0]
[0 0 1]
for a reflection about line y=-x
is equivalent to a reflection relative to the y-axis followed by a counter-clockwise rotation of 90 degrees."

So for my answer, first I have for the reflection relative to the y axis, I have the matrix:
[-1 0 0]
[0 1 0]
[0 0 1]

and for the counter-clockwise rotation of 90 degrees, I have the matrix:
[0 -1 0]
[1 0 0]
[0 0 1]

but then I don't know what my next step should be.

Can anyone help me with this?

thanks,
Della
 
Physics news on Phys.org
Sure. The matrix of the combined operation is the product of the matrices for the individual operations. Multiply (matrix of rotation)*(matrix of reflection).
 
thank you
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top