with problem with matrices, reflections, rotations

  • Thread starter Thread starter dellatorre
  • Start date Start date
  • Tags Tags
    Matrices Rotations
dellatorre
Messages
5
Reaction score
0
Looking for help with a problem I'm working on:

"Show that matrix
[0 -1 0]
[-1 0 0]
[0 0 1]
for a reflection about line y=-x
is equivalent to a reflection relative to the y-axis followed by a counter-clockwise rotation of 90 degrees."

So for my answer, first I have for the reflection relative to the y axis, I have the matrix:
[-1 0 0]
[0 1 0]
[0 0 1]

and for the counter-clockwise rotation of 90 degrees, I have the matrix:
[0 -1 0]
[1 0 0]
[0 0 1]

but then I don't know what my next step should be.

Can anyone help me with this?

thanks,
Della
 
Physics news on Phys.org
Sure. The matrix of the combined operation is the product of the matrices for the individual operations. Multiply (matrix of rotation)*(matrix of reflection).
 
thank you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top