Work done by a force with a given equation

AI Thread Summary
The discussion revolves around calculating the work done by a force represented by the equation F(x,y)=2x^3 y^2 i+3xy^3 j as a particle moves from (0,0) to (4,2) along the curve y=√x. Participants express confusion about the vector components (i and j) and how to integrate the force along the specified path. It is clarified that i and j are unit vectors in the x and y directions, while x and y represent the particle's position. The conversation emphasizes the need to express the differential distance element in terms of these vectors to compute the work done. Overall, the discussion highlights the challenges faced in understanding vector calculus and the integration process for this specific problem.
trogdor5
Messages
11
Reaction score
0

Homework Statement



A force acts on a particle and is given by the following expression:
F(x,y)=2x^3 y^2 i+3xy^3 j
What is the work done by this force in moving the particle from a position (x,y) = (0,0) to (4,2) along the path given by the curve y=√x ?



Homework Equations


I know the work is the integral of the Force


The Attempt at a Solution



Honestly, very confused. I don't know how to deal with the i and j values and I have no clue how to handle the work done along the path of a different curve. Any help is appreciated!
 
Physics news on Phys.org
Yes, work is the integral of the force wrt distance, each being a vector. So the integrand and differential element look like F.dp, the dot being the scalar product of the two vectors. (I've used p for position vector to avoid confusion with the x scalar in the question.) So you need to express the vector distance element along the path in i and j coordinates. When the particle moves a distance dy in the y direction, how far does it go in the x direction?
 
I kind of understand what you're saying, but not really. I don't even think I understand what the question is asking to be honest. I don't understand how there can be x and y but also i and j coordinate systems.
 
The i and j are unit vectors representing the x and y directions respectively. X and y themselves are magnitudes of position in those directions. I.e. the position vector of the particle at time t is x(t)i + y(t)j.
 
I'm honestly trying to do it but since my math isn't that strong and I've never seen a problem like this I'm just having problems. Can you do the first step for me or walk me through a bit more step-by-step? I'm just having extreme difficulty
 
y2 = x; 2ydy = dx
A small step in position = idx + jdy = 2iydy + jdy
You know the vector form of F. Take the dot product of this with position differential above.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top