I Work Done in Changing Shape of Current Carrying Loop

AI Thread Summary
The discussion focuses on calculating the work done in transforming a square current-carrying loop into a circular one while maintaining the same length and orientation in a magnetic field. The potential energy is defined as P = M.B, where M is the magnetic moment and B is the magnetic field. Participants explore the relationship between the changing magnetic moment and the work done, emphasizing the need to integrate torque with respect to the angle. They derive expressions for the change in potential energy for both loop shapes and conclude that the work done is equal to the difference in potential energies. The integration of torque and the ratio of magnetic moments to areas are key factors in the calculations.
Anmoldeep
Messages
15
Reaction score
2
How would you go about calculating the work done in morphing a square current-carrying loop into a circular current-carrying loop, without change in length while maintaining the same angular orientation with an external magnetic field.

My book suggests defining P(potential energy) = M.B (dot product of magnetic moment and magnetic field)

I am familiar with the above formula for a varying angle between M and B but not for a varying magnetic moment. If it's true please help me in deriving it.
Suppose for the question
1.) Edge if Square loop is 'a'
2.) Current = I
3.) Magnetic field (Uniform and perpendicular to the plane of the loop)
 
Physics news on Phys.org
The relevant factor is the ratio ##4/\pi## of the areas :smile:
 
ergospherical said:
The relevant factor is the ratio ##4/\pi## of the areas :smile:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta), here though theta remains the same and M is changing, I have found an integral by mapping every elemental length on the square back to the circle and calculating the work done for all such elemental length's but the integral is not computable, it has truncated trigonometric terms like cos(pi/4tan(theta)-theta) that too under the square root along with other terms.
 
Anmoldeep said:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta), here though theta remains the same and M is changing, I have found an integral by mapping every elemental length on the square back to the circle and calculating the work done for all such elemental length's but the integral is not computable, it has truncated trigonometric terms like cos(pi/4tan(theta)-theta) that too under the square root along with other terms.
I think I found the solution, the textbook directly suggested the use of PE=-M.B, however we know that
Del(PE)=M.B(1-cos(theta))=PEtheta - PE0
consider two separate loops of magnetic moment M1 and M2 (square and circle respectively)
Del(PE1)=M1.B(1-cos(theta))=PEtheta - PE0
and
Del(PE2)=M2.B(1-cos(theta))=PEtheta - PE0

choose theta = pi/2 and the PEtheta term will cancel out, subtract the remaining expressions and you get the required answer as the difference in potential energies of the loops when angle between M and B is 0
 
Last edited:
Anmoldeep said:
Thanks for that, although I wanted a deeper explanation as to why potential energy is still defined by the same way, P=M.B is found by integrating Torque =MxB w.r.t (theta)
Recall that the moment ##\mathbf{K}## acting on the magnetic dipole is ##\mathbf{K} = \mathbf{m} \times \mathbf{B}##. If the dipole is rotated to angle ##\theta## (e.g. about an axis perpendicular to the plane containing ##\mathbf{m}## and ##\mathbf{B}##) then the work done by the magnetic field is \begin{align*}
w(\theta) = \int^{\theta} \mathbf{K} \cdot d\boldsymbol{\varphi} = -\int^{\theta} mB \sin{\varphi} d\varphi = mB \cos{\varphi} \bigg{|}^{\theta} = mB\cos{\theta} + c_0
\end{align*}##c_0## can be set arbitrarily. The potential energy is simply ##u = -w = -\mathbf{m} \cdot \mathbf{B}##.
 
Supplementary to the above posts, maybe combining them (?):

Ratio of mag moment = ratio of areas for same current.
Then compute ## \Delta PE ## as I think @ergospherical describes.
Then ## \Delta W = \Delta P.E. ##, W = work.
 
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top