Working out a Second Class Constraint in Gory detail?

  • Thread starter Thread starter pqnelson
  • Start date Start date
  • Tags Tags
    Class Constraint
pqnelson
Messages
8
Reaction score
0
Hello,

I've been fooling around with some equations, and I've managed to land a second class constraint (I don't know whether to laugh or cry). Well, I was wondering is there any good introduction to the subject?

The problem I have is that I made the conjugate momentum a function of position, so I have the constraint:
C^i = \pi^i - p^i = 0
and thus
[C^i, C^j] \neq 0
and I would like to know what exactly [C^i, C^j] is equal to; however, I've never really learned quantum field theory "traditionally" and so I'm completely stuck.

Any help would be greatly appreciated!
 
Physics news on Phys.org
If i don't know who \pi^{i} and p^{i} are, i can't really help you.

Daniel.

P.S. It's enough to post the lagrangian (density) you started with.
 
Well, I think I've got it figured out now, thanks anyways.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top