Write this integral in terms of gamma function

eprparadox
Messages
133
Reaction score
2
Hey!

So I'm self studying mary boas's mathematical methods book and I've come across this integral:

<br /> \int _{0}^{\infty }e^{-x^4}dx<br />

and I'm suppose to write this using the gamma function. The hint given states to let x^4 = u. And the answer is:

<br /> \Gamma \left( \dfrac {5} {4}\right) <br />

I tried substituting u = x^4 and du = 4x^3dx, but that doesn't give the correct answer.

I'm a bit confused as to how the book got that answer. Any ideas would be great.

Thanks!
 
Mathematics news on Phys.org
After substitution you should have something you can express as ## t \Gamma(t) ## which you can rewrite using the relation ## t\Gamma(t) = \Gamma(t+1)##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top