Writing the sum of a series as a function of x

me_and_you
Messages
6
Reaction score
0

Homework Statement


Find all the values for which the series (where n=1 to infinity) \sum((2x-3)/5)^n converges. For these values of x, write the sum of the series as a function of x in simplified form.

Please Please help!
 
Physics news on Phys.org
this is just a geometric series. remember \sum_{n=0}^{\infty} y^n coverges iff |y|<1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top