How to Derive Yang-Mills Theories from a Kaluza-Klein Perspective?

  • Thread starter Thread starter BVM
  • Start date Start date
  • Tags Tags
    Fields
BVM
Messages
9
Reaction score
0

Homework Statement


I am going through the book "Symmetries in Fundamental Physics" by Kurt Sundermeyer and in his part on deriving Yang-Mills theories from a Kaluza-Klein perspective I seem to be stuck on a small step in the derivation.

Homework Equations


He expands the metric in a typical Kaluza-Klein-like style
## \begin{cases}
&\hat{g}^{0}_{\mu \nu} (x) = W(\phi) g_{\mu \nu} + f(\phi)h_{\iota \kappa} \mathcal{B}^{\iota}_{\mu}\mathcal{B}^{\kappa}_{\nu}\\
&\hat{g}^{0}_{\mu \kappa} (x) = f(\phi) h_{\iota \kappa}\mathcal{B}^{\iota}_{\mu}\\
&\hat{g}^{0}_{\iota \kappa} (x) = f(\phi)h_{\iota \kappa}
\end{cases}##
and derives from it that under diffeomorphism, the B-field should transform as
##\mathcal{B}'^{\iota}_{\mu} = \frac{\partial x^{\nu}}{\partial x'^{\mu}}\left( \frac{\partial \theta'^{\iota}}{\partial \theta^{\kappa}} \mathcal{B}^{\kappa}_{\nu} - \frac{\partial \theta'^{\iota}}{\partial x^{\nu}} \right).##
Now, by considering the isometries infinitesimally
##\theta'^{\iota} = \theta^{\iota} + \epsilon^a(x)K^{\iota}_a(\theta)##
and expanding the B-fields in terms of the Killing vectors
##\mathcal{B}^{\iota}_{\mu} = g K^{\iota}_{a} \mathcal{A}^{a}_{\mu}##
he gets
##g K^{\iota}_{d} \mathcal{A}^{d}_{\mu} = (\delta^{\iota}_{\kappa} + \epsilon^a \partial_{\kappa}K^{\iota}_a) g K^{\kappa}_{b} \mathcal{A}^{b}_{\mu} - K^{\iota}_{a}\partial_{\mu}\epsilon^a.##

This i can follow, but now he claims that via
##K^{\kappa}_{a} \partial_{\kappa} K^{\iota}_{b} - K^{\kappa}_{b} \partial_{\kappa} K^{\iota}_{a} = f_{abc} K^{\iota}_{c}##
he can get
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + \frac{1}{g}f^{bca}\mathcal{A}^b_{\mu}\epsilon^c - \frac{1}{g} \partial_{\mu}\epsilon^a.##

3. The attempt at a solution
By just plugging in the relation I can get as far as
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + f^{bca}\mathcal{A}^b_{\mu}\epsilon^c + \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} - \frac{1}{g} \partial_{\mu}\epsilon^a##
but I don't see how the extra term cancels or how the ##\frac{1}{g}## appears in the second term.
 
Physics news on Phys.org
BVM said:
By just plugging in the relation I can get as far as
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + f^{bca}\mathcal{A}^b_{\mu}\epsilon^c + \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} - \frac{1}{g} \partial_{\mu}\epsilon^a##
but I don't see how the extra term cancels or how the ##\frac{1}{g}## appears in the second term.

Performing the contraction, we find

$$ \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} = \epsilon^a(\partial_{\kappa} K^{\kappa}_b)\mathcal{A}^b_{\mu},$$

but the divergence of a Killing vector vanishes, so this is zero.
 
Oh my god how did I miss this.

Thanks a lot!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top