I Yang-Mills Stress-Energy Tensor Explained

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace? (usually I would interpret the trace of a matrix as the number ##\mathrm{tr}(a_{\mu \nu}) = {a^{\mu}}_{\mu}##.)
 
Physics news on Phys.org
The trace is over the group indices that are not explicitly written out.
 
  • Informative
Likes ergospherical
It would have made more sense to just show "a" as a SU(n) adjoint rep. index on those F's, rather than use Tr which becomes problematic when you consider QCD, that is adding gammas and spinors and their trace(s).
 
  • Like
Likes vanhees71 and ergospherical
ergospherical said:
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace?

For such questions of notation, it would be helpful to give the reference.
 
  • Like
Likes vanhees71 and ergospherical
ergospherical said:
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace?
Here F_{\mu\nu} is the matrix-valued field tensor: F_{\mu\nu} = \mathcal{F}_{\mu\nu}^{a}X_{a} , where the X’s are a set (in fact, any set) of matrices satisfying the Lie algebra of the group [X_{a},X_{b}] = i C_{ab}{}^{c}X_{c}.
So \mbox{Tr}\left( F_{\mu\nu}F^{\mu\nu}\right) = \mathcal{F}_{\mu\nu}^{a}\mathcal{F}^{\mu\nu b} \ \mbox{Tr} \left( X_{a}X_{b}\right), and \mbox{Tr}\left(X_{a}X_{b}\right) \equiv \left(X_{a} X_{b}\right)_{ii}, \ \ i = 1,2, \cdots , p where p is the dimension of the representation. For simple compact Lie groups, we can always choose the X’s to be trace-orthonormal \mbox{Tr}\left( X_{a}X_{b}\right) = 2C \delta_{ab} , where C is a constant for each irreducible part of the representation. The matrix notation is useful because it makes gauge-invariance (kind of) obvious: \mbox{Tr}\left(gF_{\mu\nu}g^{-1}gF^{\mu\nu}g^{-1}\right) = \mbox{Tr}\left( F_{\mu\nu}F^{\mu\nu}\right).
 
  • Like
  • Informative
Likes ergospherical, vanhees71 and dextercioby
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top