Young's Modulus and the strain on a sphere due to a uniform pressure

alex62089
Messages
2
Reaction score
0
If I have thin shell like a beach ball inflated with air how would I calculate the change in radius and resistance there of due to the pressure inside the sphere? I have calculated the strain on the sphere to be Pr/2h where P=pressure r=radius h= thickness by cutting the sphere in half and assuming that the pressure over the area pi r^2 = the tension in the shell on this plane (2pir(sigma)) so sigma=Pr/2h. I have tried to use this and various stress strain equations, including the young's modulus equation to calculate the change in radius or surfacearea but so far have failed to do so correctly. My biggest problem is in turing this otherwise linear set of equations into ones that work over an area. Could you please verify my strain equation and help me finish my calculations.

Thank you in advance,
-Alex
 
Physics news on Phys.org
Your stress equation, \sigma_{\theta} = \sigma _{\phi} = pr/2h is correct.

Next, how did you write out the Hooke's law relation?

And how do you know your answer is wrong?
 
Stress(sigma)=Young's Modulus(E) * Strain(epsilon or change in length/initial length)

That's what I used and I think that It's wrong because it seems to imply a linear relationship between radial expansion and surface area expansion but intuitively this doesn't seem to be the case. I have tried using dA as the square of dl and differentiating the formula for the surface area of a sphere but don't know if either is mathematically correct.
 
The length you should be using is the circumference.

For small expansions, you will have a nearly linear relationship between linear, suraface and volumetric strains. Recall, 3\alpha = 2\beta = \gamma
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top