Young's modulus of the material

AI Thread Summary
The discussion focuses on deriving equations related to Young's modulus and moment of inertia for different beam shapes. Young's modulus (Y), radius of curvature (r), and bending moment (C) are connected through the equation C = YI / r, where I represents the moment of inertia. The moment of inertia for a rectangular beam is given by I = wt^3 / 12, while formulas for round and square beams are also provided. The user seeks assistance in deriving the moment of inertia for an H-shaped beam and understanding the Koenig's Apparatus formula for angle of deflection. The conversation highlights the need for clarity in deriving these equations for practical applications in beam analysis.
Franco
Messages
12
Reaction score
0
Hello again,
I don't understand how to derive equations.
#1
C = YI / r

Y = Young's modulus of the material
r = radius of curvature of the neutral surface
I = geometrical moment of inertia of the cross section of the beam
C = bending moment

#2
I = wt^3 / 12

I = moment of inertia
w = width of rectangular beam
t = thickness of rectangular beam

#3
Koenig's Apparatus
theta = h / 2(d+2D)

theta =angle of deflection
d = distance between mirrors on rectangular beam
D = distance between mirror(mirror which is closer to telescope) to scale
h = difference between the reading of scale


Thank you :D
i'm not good wif deriving equations :(

oh, and one more
have a question asking me to arrange three beams in the order of their radius of curvature when Y, C and A are equal, the three beams are Round beam, Square beam, H-shaped beam.
i just need to find equations for moment of inertia for these shapes?
 
Physics news on Phys.org
for arranging the order for three beams
for
Round beam, i have I = A^2 / 12
Square beam, i have I = A^2 / 12

with equation C = YI / r
Round beam will have r = YI / C = [Y*(A^2 / 12)] / C
Square beam will have r = YI / C = [Y*(A^2 / 12)] / C

but i don't know how to convert the H-shaped beam
i found out, for H-shaped beam
A = HB + hb
I = (BH^3 + bh^3) / 12

https://www.physicsforums.com/attachment.php?attachmentid=1682&stc=1
 

Attachments

  • H-shaped.JPG
    H-shaped.JPG
    2.5 KB · Views: 992
Last edited:
i've derived the other formulae
but I'm still stuck on this one, Koenig's Aparatus formula
here's a picture of it with the formula need to derive into

theta = h / [2(d+2D)]
 

Attachments

  • Koenig's Apparatus.JPG
    Koenig's Apparatus.JPG
    5.3 KB · Views: 1,139
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top