What is Gauge: Definition and 684 Discussions

In physics, a gauge theory is a type of field theory in which the Lagrangian does not change (is invariant) under local transformations from certain Lie groups.
The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quanta of the gauge fields are called gauge bosons. If the symmetry group is non-commutative, then the gauge theory is referred to as non-abelian gauge theory, the usual example being the Yang–Mills theory.
Many powerful theories in physics are described by Lagrangians that are invariant under some symmetry transformation groups. When they are invariant under a transformation identically performed at every point in the spacetime in which the physical processes occur, they are said to have a global symmetry. Local symmetry, the cornerstone of gauge theories, is a stronger constraint. In fact, a global symmetry is just a local symmetry whose group's parameters are fixed in spacetime (the same way a constant value can be understood as a function of a certain parameter, the output of which is always the same).
Gauge theories are important as the successful field theories explaining the dynamics of elementary particles. Quantum electrodynamics is an abelian gauge theory with the symmetry group U(1) and has one gauge field, the electromagnetic four-potential, with the photon being the gauge boson. The Standard Model is a non-abelian gauge theory with the symmetry group U(1) × SU(2) × SU(3) and has a total of twelve gauge bosons: the photon, three weak bosons and eight gluons.
Gauge theories are also important in explaining gravitation in the theory of general relativity. Its case is somewhat unusual in that the gauge field is a tensor, the Lanczos tensor. Theories of quantum gravity, beginning with gauge gravitation theory, also postulate the existence of a gauge boson known as the graviton. Gauge symmetries can be viewed as analogues of the principle of general covariance of general relativity in which the coordinate system can be chosen freely under arbitrary diffeomorphisms of spacetime. Both gauge invariance and diffeomorphism invariance reflect a redundancy in the description of the system. An alternative theory of gravitation, gauge theory gravity, replaces the principle of general covariance with a true gauge principle with new gauge fields.
Historically, these ideas were first stated in the context of classical electromagnetism and later in general relativity. However, the modern importance of gauge symmetries appeared first in the relativistic quantum mechanics of electrons – quantum electrodynamics, elaborated on below. Today, gauge theories are useful in condensed matter, nuclear and high energy physics among other subfields.

View More On Wikipedia.org
  1. EastWindBreaks

    Pressure reported from a water line, gauge or absolute?

    Homework Statement Homework EquationsThe Attempt at a Solution I thought the pressure in a water line is in gauge pressure, but the solution suggests that 1630 kPa is in absolute pressure, do we always assume absolute pressure unless otherwise specified?
  2. S

    A Gravitational anomalies in gauge theory

    Dear All Can anyone explain for me what is meant by gravitational anomalies in gauge theory? What is the difference between it and gauge anomalies? Thank you
  3. diegzumillo

    A Gauge anomalies (and cancellations)

    Hey all As usual I can get through the specifics of calculations on books but the big picture escapes me. I'm having difficulty understanding gauge anomalies and cancellations. To be more specific, every book I read talks about Feynman diagrams, giving the impression that gauge anomalies are a...
  4. V

    Rewriting neutral gauge bosons (EW) for vacuum with Y=-1

    Homework Statement So, my textbook proposes a to check what will change in mass and mass eigenvectors of Z and photon in terms of ##W_{3}## and ##B_{\mu}## fields in Higgs mechanism for EW if we choose a vacuum hypercharge to be -1 and compare results to SM (where we know that photon is...
  5. J

    A Any good idea how non-abelian gauge symmetries emerge?

    I think the story where abelian, i.e. U(1), gauge symmetry comes from is pretty straight-forward: We describe massless spin 1 particles, which have only two physical degrees of freedom, with a spin 1 field, which is represented by a four-vector. This four-vector has 4 entries and therefore too...
  6. tomdodd4598

    I Problem with Commutator of Gauge Covariant Derivatives?

    Hi there, I have just read that the gauge field term Fμν is proportional to the commutator of covariant derivatives [Dμ,Dν]. However, when I try to calculate this commatator, taking the symmetry group to be U(1), I get the following: \left[ { D }_{ \mu },{ D }_{ \nu } \right] =\left( {...
  7. dextercioby

    U(1) invariance of classical electromagnetism

    This is an interesting question that popped through my mind. Some of us should know what is meant by „gauge transformations”, „gauge invariance/symmetry” and are used to seeing these terms whenever lectures on quantum field theory are read. But the electromagnetic field in vacuum (described in a...
  8. N

    A Gauge Theory: Principal G Bundles

    I've been studying TQFT and gauge theory. Dijkgraaf-Witten theory in particular. One learns that a topological field theory applied to a manifold outputs the number of principal G bundles of a manifold. My question is for the Physicists in the room, why do you want to know the number of...
  9. lalo_u

    A QED propagator in Coulomb gauge

    My aim is to derive the photon propagator in an Coulomb gauge following Pokorski's book method. In this book the photon propagator in Lorenz gauge was obtained as follows: 1. Lorenz gauge: ##\partial_{\mu}A^{\mu}=0## 2. It's proved that ##\delta_{\mu}A^{\mu}_T=0##, where...
  10. lalo_u

    A Photon propagator in Coulomb gauge

    My aim is to derive the photon propagator in an Coulomb gauge following Pokorski's book method. In this book the photon propagator in Lorenz gauge was obtained as follows: Lorenz gauge: ##\partial_{\mu}A^{\mu}=0## It's proved that ##\delta_{\mu}A^{\mu}_T=0##, where...
  11. S

    What gauge wire to use? noob circuits

    2 sets of 6x LED strips, each 12v 8.1a 97.2W, powered by a single cv 240W PSU, in parallel. The 2 sets are split at the PSU end, each set getting 120W separately. Schematic below, What I don't know is what gauge wire to use at points A and B? Can you please explain what should be used and why...
  12. J

    A How can gauge symmetry be broken?

    Hello, I was reading about the Higgs mechanism and I must say that I did not really follow the argument of how the gauge symmetry is broken. I think that my problem has to do with the more general question of how does a gauge symmetry get broken in general? Thanks!
  13. B

    Hydraulic Press actual Press Force (tons)

    Hi all. I am new to this site and I would like to verify the following calculation. Is it correct to do it this way? Please advise. Thanks. Hydraulic Press: 15 tons (Enerpac RC1510) Gauge Max Pressure: 10000 psi Actual Gauge Reading: 2500 psi Actual pressure (tons) = (2500/10000) X 15 tons =...
  14. B

    B Yukawa interaction vs gauge interaction

    The Higgs boson can be thought of as mediating a "fifth force" that is not a gauge force but a Yukawa interaction. What is the main difference between Yukawa and gauge interaction?
  15. S

    I Understanding Lorenz Gauge Derivation

    Can someone explain to me (or point me towards a source) how is the Lorenz Gauge derived? I am reading the Griffiths book and from what I understand we can do the transformation ##A' = A + \nabla \lambda## and at the same time ##V' = V - \frac{\partial \lambda}{\partial t}## and B and E remain...
  16. quasar987

    I What Is the Role of Gauge Theory in Particle Physics?

    Hi everyone, So I recently read a chapter in a math book that vaguely describe how connections on bundles occur in particle physics, but they are very cryptic about the physics part and I just want to know a little bit more about it. So I'll tell you what I read and then follow up with some...
  17. S

    A Diffeomorphism invariance and gauge invariance

    Consider the following paragraph taken from page 15 of Thomas Hartman's lecture notes (http://www.hartmanhep.net/topics2015/) on Quantum Gravity: In gravity, local diffeomorphisms are gauge symmetries. They are redundancies. This means that local correlation functions like ##\langle...
  18. S

    A Gauge transformations at infinity

    Consider the following paragraph taken from page 15 of Thomas Hartman's lecture notes (http://www.hartmanhep.net/topics2015/) on Quantum Gravity: In an ordinary quantum field theory without gravity, in flat spacetime, there two types of physical observables that we most often talk about are...
  19. P

    I Embeddings of Gauge Group in Einstein-Yang-Mills Theory

    In the framework of Einstein-Yang-Mills (EYM) theory, suppose the following action: \begin{equation}S=\int\left({\kappa R + \alpha tr(F_{\mu \nu}F^{\mu \nu})d^4 x}\right)\,,\end{equation} where F is the gauge curvature associated with a non-abelian Lie group G and a gauge connection A. Then...
  20. binbagsss

    GR metric gauge transformation, deduce 'generating' vector

    1. Problem ##g_{uv}'=g_{uv}+\nabla_v C_u+\nabla_u C_v## If ##g_{uv}' ## is given by ##ds^2=dx^2+2\epsilon f'(y) dx dy + dy^2## And ##g_{uv}## is given by ##ds^2=dx^2+dy^2##, Show that ## C_u=2\epsilon(f(y),0)##? Homework Equations Since we are in flatspace we have ##g_{uv}'=g_{uv}+\partial_v...
  21. binbagsss

    A Intro to String Theory: Lightcone Gauge & Oscillators

    Lightcone gauge is ##X^u=\tau=1/\sqrt{2}(X^0+X^{D-1})## (1) The mode expansions are: My book says 'it is possible to solve for one of the oscillators in terms of all the others' with this relation. What is a oscillator? Is this any of the ##X^{D}## coordinates, what exactly does ##n##...
  22. S

    A Proof - gauge transformation of yang mills field strength

    In Yang-Mills theory, the gauge transformations $$\psi \to (1 \pm i\theta^{a}T^{a}_{\bf R})\psi$$ and $$A^{a}_{\mu} \to A_{\mu}^{a} \pm \partial_{\mu}\theta^{a} \pm f^{abc}A_{\mu}^{b}\theta^{c}$$ induce the gauge transformation$$F_{\mu\nu}^{a} \to F_{\mu\nu}^{a} -...
  23. S

    A Gauge transformation of gauge fields in the adjoint representation

    In some Yang-Mills theory with gauge group ##G##, the gauge fields ##A_{\mu}^{a}## transform as $$A_{\mu}^{a} \to A_{\mu}^{a} \pm \partial_{\mu}\theta^{a} \pm f^{abc}A_{\mu}^{b}\theta^{c}$$ $$A_{\mu}^{a} \to A_{\mu}^{a} \pm...
  24. S

    A Polarization of gauge bosons and gauge choice

    Consider the following facts: 1. For a particle with momentum ##k##, the two transverse polarization vectors ##\epsilon({\bf k}, \lambda_{1})## and ##\epsilon({\bf k}, \lambda_{1})## are purely spatial and orthogonal to ##\bf k##, that is, ##\epsilon^{0}({\bf k}, \lambda_{1}) = 0,##...
  25. J

    A What defines a large gauge transformation, really?

    Usually, one defines large gauge transformations as those elements of ##SU(2)## that can't be smoothly transformed to the identity transformation. The group ##SU(2)## is simply connected and thus I'm wondering why there are transformations that are not connected to the identity. (Another way to...
  26. gasar8

    Axial Gauge V Rubakov: Find Residual Gauge Transforms for Maxwell Eqns

    V. Rubakov: Classical Theory of Gauge Fields, Problem 4: Find the residual gauge transformations and the general solution of the Maxwell equations in the axial gauge (\vec{\textbf{n}} \cdot \vec{\textbf{A}}=0), where \vec{\textbf{n}} is some fixed unit three-vector, which is constant in...
  27. S

    A HIggs coupling to electroweak gauge bosons

    The coupling of the Higgs boson to the electroweak gauge bosons in the Standard model is given by $$\mathcal{L}_{\text{H-g}} = - \left( \frac{H}{v} + \frac{H^{2}}{2v^{2}} \right) \left(2M_{W}^{2}W_{\mu}^{+}W^{-\mu} + M_{Z}^{2}Z_{\mu}Z^{\mu} \right).$$ However, in Cliff Burgess' textbook 'The...
  28. F

    I Difference between global and local gauge symmetries

    The mantra in theoretical physics is that global gauge transformations are physical symmetries of a theory, whereas local gauge transformations are simply redundancies (representing redundant degrees of freedom (dof)) of a theory. My question is, what distinguishes them (other than being...
  29. M

    I ## k^0-\bar{k^0} ## mixing and gauge boson propagator

    Hi all , I'm studying ## k^0-\bar{k^0} ## mixing from Cheng & Li's book "gauge_theory_of_elementary_particle_physics", page: 379 , I found that they consider the gauge boson propagator in the Feynman gauge, where ## i\Delta_{\mu\nu} = -i \frac{g_{\mu\nu}}{k^2-M^2_W} ## , but till my knowledge...
  30. M

    I The propagator of the gauge field

    Hi, I read in a QFT book that the free massive vector boson Lagrangian is ## \mathcal{L}_W = - \frac{1}{4} (\partial_\mu W^\dagger_\nu - \partial_\nu W_\mu^\dagger ) (\partial^\mu W^\nu - \partial^\nu W^\mu ) + M^2_W W^\dagger_\mu W^\mu ## gives the propagator in momentum space by: ## i...
  31. J

    Quantum Book on gauge transformations/symmetry & geometrical phases?

    Hello! I will be attending a course on condensed matter physics with emphasis on geometrical phases and I was wondering if the are any good books on gauge transformations, gauge symmetry and geometrical phases that you know of. Thanks in advance!
  32. C

    I SU(3) Gauge Group: QCD & SM Invariance Explained

    The lagrangian of a non interacting quark is made to be invariant under local SU(3) transformations by introduction of a new field, the gauge field, giving rise to the gluon. This gives us a locally gauge invariant lagrangian for the quark field and together with the construction of a locally...
  33. S

    A Gauge and Lorentz invariance for Lagrangians

    Consider the following Lagrangian: ##YHLN_{1}^{c} + Y^{c}H^{\dagger}L^{c}N_{1} + \text {h.c.},## where ##L=(N_{0}, E')## and ##L^{c} = (E^{'c}, N_{0}^{c})## are a pair of ##SU (2)## doublets and ##N_{1}## and ##N_{1}^{c}## are a pair of neutral Majorana fermions...
  34. Vanessa Avila

    Finding the gauge pressure at the bottom of a barrel

    Homework Statement A barrel contains 0.130-m layer of oil floating on water that is 0.290 m deep. The density of the oil is 610 kg/m3 What is the gauge pressure at the bottom of the barrel? Homework Equations P [/B]= ρ(g)(h) The Attempt at a Solution I found the pressure of the oil which...
  35. Vibin Narayanan

    B Gauge Boson Exchange: Do Particles Influence Each Other?

    Do a particle influence another particle by exchange of gauge bosons? If so, how?
  36. P

    Gauge symmetry for massless Klein-Gordon field

    Homework Statement I need to gauge the symmetry: \phi \rightarrow \phi + a(x) for the Lagrangian: L=\partial_\mu\phi\partial^\mu\phi Homework EquationsThe Attempt at a Solution We did this in class for the Dirac equation with a phase transformation and I understood the method, but...
  37. Andrea_G

    A Four Bosons vertex related to gauge symmetry

    Hi, is correct to say that there is no interaction between four photons because the gauge group of QED is U (1) while there are interactions of four gluons or four W's because the gauge group of QCD is SU (3) and EW's one is SU (2) xU (1)? I know that the interaction between four photons is not...
  38. S

    I Gauge invariance of momentum of charged particle

    I know that, in the presence of a magnetic field, the momentum of a charge particle changes from ##p_{i}## to ##\pi_{i}\equiv p_{i}+eA_{i}##, where ##e## is the charge of the particle. I was wondering if this definition of momentum is gauge-invariant? How about ##\tilde{\pi}_{i}=p_{i}-eA_{i}##?
  39. N

    I Understanding Weak Isospin in SU(2) Gauge Theory

    In QCD, quark is in fundamental representation of SU(3) and thus it has to have 3 charges (what we came to call "colors"). Gauge bosons are in adjoint representation and there are 8 of them. The choice how to assign color charges to them is not unique, one popular choice is based on Gell-Mann...
  40. S

    A Gauge invariance and covariant derivative

    Consider the covariant derivative ##D_{\mu}=\partial_{\mu}+ieA_{\mu}## of scalar QED. I understand that ##D_{\mu}\phi## is invariant under the simultaneous phase rotation ##\phi \rightarrow e^{i\Lambda}\phi## of the field ##\phi## and the gauge transformation ##A_{\mu}\rightarrow...
  41. Ontophobe

    B FTL Spin 1 Gauge Boson: Impact of Dark Matter Discovery

    What would be the ramifications of discovering that a) dark matter radiates something non-electromagnetic, and that b) this radiation always travels at a constant velocity according to all inertial reference frames, but c) this constant velocity is equal to, say, c times pi?
  42. DavideGenoa

    Proving Lorenz Gauge Choice: A Getty's Physics Exploration

    Hello, friends! My textbook, Gettys's Physics, says that the Lorenz gauge choice uses the magnetic vector potential $$\mathbf{A}(\mathbf{x},t):=\frac{\mu_0}{4\pi}\int \frac{\mathbf{J}(\mathbf{y},t-c^{-1}\|\mathbf{x}-\mathbf{y}\|)}{\|\mathbf{x}-\mathbf{y}\|}d^3y $$and the electric potential...
  43. M

    A Quantized E field, Coulomb Gauge with Interactions

    The common presentation for free field quantization proceeds with the Lorentz and Coulomb (##\phi = 0, \,\nabla \cdot \mathbf{A} = 0 ##) constraints. Then ##A## can be defined $$\mathbf{A} \propto \iint \frac{d^3 p}{\sqrt{2\omega_p}}\sum_{\lambda} \Big(e^{i\mathbf{p}\cdot...
  44. D

    Torque Calculation without a gauge

    Hi How can I measure, shaft power (watts or HP) of a vertical turbine using dead weight blocks Turbine diameter - 18 inches RPM - 450 ( Zero Load)
  45. haushofer

    Insights General Relativity as a Gauge Theory - Comments

    haushofer submitted a new PF Insights post General Relativity as a Gauge Theory Continue reading the Original PF Insights Post.
  46. F

    I Gauge transformation in cosmological perturbation

    Based on this lecture notes http://www.helsinki.fi/~hkurkisu/CosPer.pdf For a given coordinate system in the background spacetime, there are many possible coordinate systems in the perturbed spacetime, all close to each other, that we could use. As indicated in figure 2, the coordinate system...
  47. B

    A Berry phase and gauge dependence

    Hi, I have a question that has been bugging me recently. It's about the berry phase and something that I find contradictory. One can see that it is possible to get rid of 2π x (integer) part of the Berry phase by means of a gauge transformation. This in general applies to phases (gauge...
  48. B

    A Analogy of counterterms of gauge in GR

    In gauge theories, the counterterms in the equation to balance the gauge freedom (like the phase in electrodynamics) produce the forces of nature. In GR.. what is the equivalent of the counterterms and what is the equivalent of the phase or isospins freedom in electroweak)?
  49. emcsquared

    When is gauge pressure absolute pressure?

    Homework Statement Hi Physics gurus, this question was in my Chem Eng exam, and I can't agree with my lecturer's answer. He makes a LOT of mistakes, so it's hard to know when he's being clever or reallllly dumb. The question I have issue with is: "Is the pressure a manometric or an absolute...
  50. ShayanJ

    A Propagator for traceless gauge field

    I'm reading the ## \frac 1 N ## chapter of Sidney Coleman's "Aspects of Symmetry". Equation 3.5, gives the gluon propagator as below: ## A^a_{\mu b}(x)A^c_{\nu d}(y)=\left( \delta^a_d \delta^c_b-\frac 1 N \delta^a_b \delta^c_d \right) D_{\mu \nu}(x-y)##. Then he explains that the term...
Back
Top