What is Quantum mechanics: Definition and 995 Discussions

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Classical physics, the description of physics that existed before the theory of relativity and quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, while quantum mechanics explains the aspects of nature at small (atomic and subatomic) scales, for which classical mechanics is insufficient. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).
Quantum mechanics arose gradually from theories to explain observations which could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper which explained the photoelectric effect. These early attempts to understand microscopic phenomena, now known as the "old quantum theory", led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical entity called the wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield.

View More On Wikipedia.org
  1. J

    B Has anyone ever been able to measure Electron size?

    Hello! I was recently listening to StarTalk podcast and (re)learned that the electron is one of the most elusive particles for which there is no known size. Have there ever been any attempts to measure the size of the electron, either directly or indirectly, from either a practical or theory? I...
  2. topsquark

    Algebra Find Algebraic Physics Courses Starting with Classical Mechanics - Dan

    I just finished an online YouTube Quantum Mechanics course by Frederic Schuller. The course was in two parts, the one Schuller was doing was theory; it was an approach I had been trying to develop myself and had never found anywhere. I don't know what exactly to call the course label: it was...
  3. casparov

    Help Solve for the normalization constant of this QM integral

    I'm given the wavefunction and I need to find the normalization constant A. I believe that means to solve the integral The question does give some standard results for the Gaussian function, also multiplied by x to some different powers in the integrand, but I can't seem to get it into...
  4. vibhuav

    I Physical meaning of two independent, non-interacting parts

    I keep coming across this descriptor, "two (or three) independent, non-interacting parts," in many books on QM (for example, Penrose's Shadows of the Mind). It is usually followed by a mathematical description (for example, state vector |A>|B>). I can wrap my mind around the quantum paradox of...
  5. O

    I What do you need to establish that spin is conserved?

    Hi. Question as in the summary. Spin has no obvious classical interpretation but it is often a conserved quantity and considered as some sort of angular momentum. What do you need to establish that spin is a conserved quantity? I'm finding references to situations where spin is not a...
  6. Demystifier

    I What Defines the Standard and Realist Views in Quantum Mechanics?

    As you may have noticed, I am obsessed with understanding the difference between two views of quantum mechanics, one of which can be called the "standard" view, and the other the "realist" view. The difference, of course, is very complicated, but I believe that the essence and origin of the...
  7. Demystifier

    I Ontology is to quantum theory what hardware is to computation theory

    In interpretations of quantum mechanics there are two types of physicists: those who care about ontology and those who don't. The ontologists, or realists, want to know what is the world made of. The non-realists, on the other hand, think that this question is not relevant to physics. Usually...
  8. P

    I Quantum Mechanics as a Probabilistic forecast of reality

    Is Quantum Mechanics a Probabilistic Forecast of nature?Someone I know told me their interpretation of QM is that QM only a probabilistic forecast of systems like electrons around atoms. I would like someone to analyse this interpretation and say if its valid or not. According to this person we...
  9. lektroon

    I Are Nicolas Gisin's Intuitionist Mathematics Theories Compatible with SR and GR?

    Hello, As a layman in physics, I wonder the ideas of people who have more knowledge in physics than I do about the theories of Swiss Physicist Nicolas Gisin and his arguments about the intuitionist mathematics. Is there a way to reconcile these ideas with more fundamental theories like SR and...
  10. graviton_10

    I Showing that operators follow SU(2) algebra

    For two quantum oscillators, I have raising and lowering operators and , and the number operator . I need to check if operators below follow commutation relations. Now as far as I know, SU(2) algebra commutation relation is [T_1, T_2] = i ε^ijk T_3. So, should I just get T_1 and T_2 in...
  11. L

    B Bell inequality test without polarisation?

    Was trying to understand the inequality test. The only article ever that I've found that explains it simply is the 1981 article, Bringing home the atomic world: Quantum Mysteries For Anybody. All other explanations require trust and understanding of polarisation, which is a huge deal. So i now...
  12. hachi44

    I Principles of Quantum Mechanics - Hans C. Ohanian - 0137127952

    Hi. I looked everywhere for a specific book but I cannot find any pdf copy of it. The book specifics are below: Publication Name: Principles of Quantum Mechanics Author: Hans C. Ohanian Publisher: Benjamin Cummings Publishing Company ISBN-10: 0137127952 ISBN-13L 9780137127955 I would...
  13. HadronPhysics

    A Numerical method to Lippman-Schwinger equation

    There is a question that puzzle me when I apply numerical method to principal value integral. Let me descibe it. We make use of the fact that the integral ##\int_0^\infty \frac{dk}{k^2-k_0^2}## vanishes, namely, $$ \int_0^\infty \frac{dk}{k^2-k_0^2} = 0 . $$ We use this formula to express a...
  14. H

    Why a particle with spin=0 can't posses a magnetic dipole moment?

    Hi, I would like to know why a particle with spin=0 can't posses a magnetic dipole moment? Using Wigner-Eckart theorem for ##\langle j,1,m,0|j,m \rangle## I get ##\langle j'|| \vec{J}|| j \rangle = \hbar \sqrt{j(j+1)} \delta_{jj'}## It seems like the right hand side is the magnetic dipole...
  15. H

    Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

    Hi, Given a spin in the state ##|z + \rangle##, i.e., pointing up along the z-axis what are the probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##? My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue...
  16. V

    A How to derive Quantum Mechanics in curved physical space?

    I am following [this YouTube lecture by Schuller][1] where he finds the appropriate formalism for the quantum mechanics in the physical curved space. Everything makes sense to me but at the very end I see that we find the pull backed connection one-form on the base manifold. He says to the end...
  17. O

    I Limit of quantum mechanics as h -> 0

    Starting from the Heisenberg equation of motion, we have $$ih \frac{\partial p}{\partial t} = [p, H]$$ which simplifies to $$ih \frac{\partial p}{\partial t} = -ih\frac{\partial V}{\partial x}$$ but this just results in ## \frac{\partial p}{\partial t} = -ih\frac{\partial V}{\partial x}## and...
  18. K

    B Searching for Quantum Mechanics Lecture on Delayed Choice Experiment

    Hi everybody. Some years ago I came across a video on youtube where they talked about an experiment with small and large envelops, when the small ones were placed into the large ones and then it resulted in something interesting. It might have been an instance of delayed choice, but I am not...
  19. J

    I Why is quantum mechanics not valid for large objects?

    It this correct explanation why quantum is not valid for large object? Why would small object want to hide their information?
  20. C

    A Multiparticle Relativistic Quantum Mechanics in an external potential

    It is often argued that Dirac Equation is not valid as relativistic quantum mechanics requires the creation of antiparticles. But, there are also some arguments that suggest otherwise. For example, I saw Arnold Neumaier's website on this that there are multiparticle relativistic quantum...
  21. CuriousLearner8

    A Eigenvalue Problem of Quantum Mechanics

    Hello, I hope you are doing well. I had a question about the eigenvalue problem of quantum mechanics. In a past class, I remember it was strongly emphasized that the eigenvalues of an eigenvalue problem is what we measure in the laboratory. ##A\psi = a\psi## where A would be the operator...
  22. H

    Unitary vector commuting with Hamiltonian and effect on system

    Hi, I'm not sure to understand what ##| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i## means exactly or how we get it. From the statement, I understand that ##[U,H] = 0## and ##H|\psi_n \rangle = E_n|\psi_n \rangle## Also, a linear combination of all states is also an solution. If U commutes...
  23. yucheng

    I Fermi's golden rule: why delta function instead of density states?

    Sakurai, in ##\S## 5.7.3 Constant Perturbation mentions that the transition rate can be written in both ways: $$w_{i \to [n]} = \frac{2 \pi}{\hbar} |V_{ni}|^2 \rho(E_n)$$ and $$w_{i \to n} = \frac{2 \pi}{\hbar} |V_{ni}|^2 \delta(E_n - E_i)$$ where it must be understood that this expression is...
  24. N

    Average value of components of angular momentum for a wave packet

    I have typed up the main problem in latex (see photo below) It seems all such integrals evaluates to 0, but that is apparantly unreasonable for in classical mechanics such a free particle is with nonzero angular momentum with respect to y axis.
  25. H

    I Spinors and eigenspinors confusion

    Hi, While studying the spin 1/2, I'm facing some confusions about the spinors and the eigenspinors. I understand that ##\chi = \begin{bmatrix}a \\ b \end{bmatrix}## is the spinor with ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}## and ##\chi_-= \begin{bmatrix}0 \\ 1 \end{bmatrix}## the...
  26. Peter Morgan

    I The collapse of a quantum state as a joint probability construction

    The titular paper can be found here, https://doi.org/10.1088/1751-8121/ac6f2f, and on arXiv as https://arxiv.org/abs/2101.10931 (which is paginated differently, but the text and equation and section numbers are the same). Please see the abstract, but in part this 24 page paper argues that we...
  27. Paul Colby

    A Recent papers refuting real-valued quantum mechanics

    So, in a rare instance I actually read APS News, I came across “New Experiment Suggests Imaginary Numbers Must be Part of Real Quantum Physics.” In November 2022, Volume 31, Number 10. Since complex numbers are isomorphic to a real 2x2 matrix algebra, I was confused how such a claim can be...
  28. H

    Allowed energy for a potential in quantum mechanics

    Hi, I'm working on a problem where I need to find the different energies allowed for a potential, and I found this link https://quantummechanics.ucsd.edu/ph130a/130_notes/node151.html, which is similar of what I'm doing. I'm using mathematica to find the values of E. However, I'm not sure how...
  29. Q

    Quantum Advanced Quantum Mechanics Textbooks: Derivations of Equations

    Hi I’m looking for a textbook that shows the derivations of equations such as the different forms of the schrodinger equation fully and step by step.
  30. I

    Quantum Mechanics problem: Determine the value of the constant

    I have no idea where to start with this problem. I am interested in any hints, or ways to proof this. But i would especially like to know how the commutator is connected to the identity.
  31. Ashish Somwanshi

    Measurement problem quantum mechanics

    I was not able to attempt since I don't know which formula or method can be used to solve the problem
  32. S

    More Nobel prizes in quantum information?

    Alain Aspect, John Clauser & Anton Zeilinger have rightfully received the Nobel prize for their contributions to quantum information, as they were three of the main pioneers of quantum information. However, is it now impossible or very unlikely that other physicists working on this field (e.g...
  33. B

    Checking assumptions in boundary conditions of double well system

    The idea here (as I'm told) is to use the boundary conditions to get a transcendental equation, and then that transcendental equation can be solved numerically. So I'm making a few assumptions in this problem: 1. The potential ##V(x)## is even, so the wavefunction ##\psi(x)## is either even or...
  34. H

    I Quantum mechanics stationary state

    Hi, I have hard time to really understand what's a stationary state for a wave function. I know in a stationary state all observables are independent of time, but is the energy fix? Is the particle has some momentum? If a wave function oscillates between multiple energies does it means that the...
  35. S

    I Energy from quantum systems in an expanding universe?

    I found a paper (https://arxiv.org/pdf/astro-ph/0411299.pdf) which talks about quantum systems emitting energy due to spacetime expansion. Is this true or only a hypothesis?
  36. sol47739

    I Postive rays in cathode ray tube experiments?

    I read in the following book A history of the sciences by Stephen F. Mason. About the discovery of the electron the write what I attached in the picture. I wonder what do these positive rays traveling in the opposite direction they talk about consist of? Some ions or what? I understand that the...
  37. pokespriter

    I About the position of electrons (uncertainty)

    Hello guys, I don't know if this is the right place to ask, so please be kind :/ I have a question regarding the location of an electron that belongs to an atom. A teacher told me that the probability of an electron to be found within its orbital is around 99%. When I asked about the remaining...
  38. sol47739

    I Exploring Electromagnetism & Quantum Mechanics

    In classical electromagnetism I think I have understood the following(please correct me if something is wrong): A charge produces an electric field, a charge moving with constant velocity produces a magnetic field, an accelerating charge emits electromagnetic radiation. In radio antennas this is...
  39. sol47739

    I Polarization of photons quantum mechanically

    What is it of the photon that gets polarized from a quantum mechanical perspective? In the classical perspective it is often thought that it is the oscillating electric field that gets polarized. But in the quantum case: Is it the de Broglie wave function? Or is it the spin and in case it is the...
  40. sol47739

    A Cause of spontaneous emission?

    I am reading this chapter 3 from the book called The Quantum Vacuum by P.Milonni.(Attached in the pdf, look at chapter 3.2 Spontaneous emission)There they say that spontaneous emission is due to both quantum fluctuations and radiation reaction. They say the transitions induced by the quantum...
  41. E

    I Understanding No Energy Degeneracy in Sakurai's Quantum Mechanics

    Hello, I'm hoping someone can help me understand a statement in Sakurai Modern Quantum Mechanics (3rd edition). In particular, in the section that describes free particle in infinite spherical well (page 198, section 3.7.2), after the text has shown that for a given ##l## value, the energy...
  42. Graham87

    Quantum Mechanics - Matrix representations

    I have found J^2 and Jz, but I am not sure how to find Jx and Jy. I’m thinking maybe use J+-=Jx+-iJy ? But I get unclear results. Thanks!
  43. R

    On the origin and the evolution of information in the Universe

    [Mentor Note -- thread moved from the schoolwork forums to the technical forums] Homework Statement:: Tentative Note and summary on the origin and the evolution of information in the universe. Relevant Equations:: none As a teacher of physics I got many questions asked by my students when...
  44. Graham87

    Intro to quantum mechanics - Spin and linear algebra

    So this expression is apparently in Sz basis? How can you see that? How would it look in Sy basis for example? The solution is following. They are putting Sz as a basis, bur how do you know that Sz is the basis here? Thanks
  45. Graham87

    Intro to Quantum Mechanics - Formalism normalisation

    I can't figure out how they get i/sqrt(2) for normalisation of c1. Why is it a complex number? If I normalise c1 I just get 1/sqrt(2) because i disappears in the absolute value squared. Thanks
  46. S

    I Many Worlds as Many Histories?

    I was reading this paper from George Smoot (https://arxiv.org/abs/1003.5952) where he assumes the holographic principle as true and conjectures that our universe would be encoded on the "surface" of an apparent horizon as the weighted average of all possible histories. In that way, there would...
  47. G

    I At which point is gravity inconsistent with quantum mechanics?

    I'd like to understand how gravity does not combine with quantum mechanics. At least there is no accepted theory of quantum gravity, so I assume it is not solved? I'm only starting to learn QFT and eventually GR. Maybe, someone can already outline where those theories fail to combine and comment...
Back
Top