PeroK: Not sure what you mean...
I get "c" as the limit. Maybe my work is wrong? Lim\, \, t\rightarrow \infty (\frac{cgt}{\sqrt{1+(9.8))^2t^2}})=cg(Lim\, \, t\rightarrow \infty (\frac{t}{\sqrt{1+(9.8))^2t^2}}))=cg(5/49)=c. So as t approaches infinity, the velocity approaches c.
Homework Statement
Good day all!
Quick question:
As part of a problem statement, I'm asked to verify if the trajectory: \frac{dx}{dt}=\frac{cgt}{\sqrt{1+g^2t^2}}
Is "consistent".
Homework Equations
None
The Attempt at a Solution
Im not sure what "consistent" means. Does it mean, \frac...
Homework Statement
In this problem we will be generating and analyzing lists of normally distributed random numbers. The distribution we are sampling has true mean 0 and standard deviation 1.
If we sample this distribution N=5 times, what do we expect the mean to be? How about the standard...
Homework Statement
Good day all!
I'm studying for finals and i'd like to know how to do this problem (its not homework):
"Using the WKB method, find the bound state energies E_n of a particle of mass m in a V-shaped potential well:
V(x)=
\begin{Bmatrix}
-V_0 (1- \begin{vmatrix}...
I've never written down the lagrangian of an extended object. I realize the K.E of the plank would be the K.E of its center of mass ( \frac{1}{2}m( \dot{x}^2+ \dot{y}^2) ) and probably some rotational K.E like \frac{1}{2} I \omega^2 but I don't know how the strings affect these terms...
Homework Statement
Calculate the Lagrangian of this set up:
Imagine having two ropes: They are both attached to the ceiling and have different lengths. One has length b and the other has length 4b. Say they are hooked to the ceiling a distance 4b apart. Now, the ropes are both hooked to a...
Homework Statement
Hello all,
Im asked to construct the state | \frac{5}{2} , \frac{3}{2} \rangle from the eigenfunctions | L, L_z\rangle and the electron states | \uparrow \rangle and | \downarrow \rangle .
Homework Equations
Clebsch Gordon Coefficient's table
The Attempt at a...
Homework Statement
Say you push a sled of mass m up a hill that is angled upwards at a certain angle \theta at a constant velocity. The hill has snow on it offering a friction force that is equal to 30% of the sleds weight. If you pushed the sled down the hill with the same amount of force...
Ahh, I see what you mean. So after the first bounce, I have:
Time for ball to reach ground again: 0= \mu v_0 -1/2gt^2 solvig for t yields: 2 \mu v_0/g so
t_1 =2 \mu v_0/g
Time for ball the reach the ground the third time:
t_2= 2 (\mu)^2 v_0/g
and so on. Is this the right direction?
Homework Statement
Hello!
A ball is dropped and falls to the floor (no horizontal velocity). It hits the floor and bounces with inelastic collisions. The velocity after each bounce is \mu times the velocity of the previous bounce (here \mu is the constant of restitution). The velocity of...
Homework Statement
Suppose that two neutrinos are created in the sun - call the states |{ \nu_1}\rangle and |{ \nu_2}\rangle .
(Among many other things) I am asked to show that once the neutrinos have propigated a distance x after a time t, the states satisfy:
|{ \nu_1}(x,t)\rangle =...