Is Martingale the Key to Success? (Attached File)

  • Thread starter Thread starter sonxi111
  • Start date Start date
  • Tags Tags
    martingale
sonxi111
Messages
2
Reaction score
0
question in attached file.
thanks in advance
 

Attachments

  • 1.jpg
    1.jpg
    30 KB · Views: 407
Physics news on Phys.org
the lecture told us to think about that this way:
if 0<t1<t2<---<tk<t
1. first, what is the conditional probability of z_n(t)-z_n(tk) given that z_n(t1),z_n(t2)...z_n(tk) ?
2. is this process z_n(t) Markovian?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top