Boiling water - amount of steam

AI Thread Summary
When boiling water, the observed increase in steam when the heating is turned off is due to the condensation of water vapor. As the kettle heats, steam escapes, but once the heat is removed, the vapor condenses more quickly, resulting in a greater visible steam output. This phenomenon occurs because the temperature drop causes the water vapor to cool and form droplets. The kettle's design may also influence steam release, but the primary factor is the thermodynamic behavior of water vapor. This explanation clarifies the common observation of increased steam after heating is stopped.
wasia
Messages
50
Reaction score
0
Hello!

There is an observation I have made when boiling water - amount of steam getting out of the kettle increases when the heating is turned off. Could anyone help to explain that?

The experiment goes like this. Take a kettle, start heating the water. The amount of the steam getting out increases (the kettle has a small hole at the top of it). When the water approaches the boiling point, the steam is getting out of the kettle at an impressive rate. However, if the heating is turned off (before or after boiling - does not matter) the amount of steam increases even further.

I wonder if
a) I am unable to judge the amount of steam accurately.
b) The form of the kettle (tested on 2) is relevant.
c) There is a good thermodynamical explanation.

Thanks.
 
Physics news on Phys.org
This is a common observation. What we're calling "steam" here is condensed water droplets (technically, steam is invisible water vapor). When you turn off the heat, the water vapor leaving the water surface condenses sooner, and the amount of "steam" therefore increases.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top