Hi gabriel
Honestly, you should be able to contact the valve manufacturer and they will give you the Cv. I don't know of a single valve maker that doesn't or won't give you that data.
Honestly, that's the right answer. "Ask the manufacturer."
I remember one or two very inexpensive ball valve manufacturers who didn't have that information though. They weren't industry quality valves, they were more like valves for home or garden use that didn't have a Cv rating. If that's the case, you can relate Cv to equivalent length as Fred was starting to discuss. Note that:
K = 891*d^4 / Cv^2
Where K = resistance coefficient referenced in Fred's post
d = inside diam (inches)
Now you can take Fred's equation and this one and you're left with one additional unknown, which is friction factor, f. Sorry, but you can't get any better than that. You have to make an assumption on f as Fred mentions.
The other way I'd suggest depends on whether or not this is a reduced port ball valve (ie: one that has a ball with an ID smaller than the ID of the pipe). If the ID of the ball is the same as the ID of the pipe, just neglect the valve altogether and assume it's a straight section of pipe. If the valve is a reduced port, calculate the resistance coefficient, K for a sudden contraction, and another for a sudden expansion, add them together, and relate that to Cv from the equation I gave above.
Attached is a paper that reviews some of this, and in which you can find sudden expansion and contraction coefficients.