How I can calculate the cv of a ball valve

  • Thread starter Thread starter gabriel
  • Start date Start date
  • Tags Tags
    Ball Cv Valve
AI Thread Summary
To calculate the Cv of a ball valve without lab measurements, one must rely on assumptions for the friction factor and loss coefficient. The equivalent length can be derived using the formula L_eq = (K_L D) / f, but accuracy may be limited without specific data. It is recommended to contact the valve manufacturer for Cv ratings, as most provide this information. For reduced port ball valves, the resistance coefficients for sudden contraction and expansion can be used to relate to Cv. Overall, obtaining manufacturer data is the most reliable approach for accurate Cv calculations.
gabriel
Messages
10
Reaction score
0
Hi!
I am working with ball valves and I need to calculate the cv for several sizes. I only knows the pressure drop expressed in terms of the "equivalent feet". Unfortunally, I do not have a lab to measure.
thanks a lot!
 
Engineering news on Phys.org
The equivalent length is

L_{eq}=\frac{K_L D}{f}

where

L_{eq} is the equivalent length
K_L is loss coefficient
D is the flow diameter
f is the friction factor

So it would appear that you would have to make assumptions of not only the friction factor, but also the loss coefficient. I would say that you are not going to get to the Cv from where you are with any accuracy.

Honestly, you should be able to contact the valve manufacturer and they will give you the Cv. I don't know of a single valve maker that doesn't or won't give you that data. Perhaps if you tell us what brand and type of ball valve you have we can hunt the info down.
 
Hi gabriel
Honestly, you should be able to contact the valve manufacturer and they will give you the Cv. I don't know of a single valve maker that doesn't or won't give you that data.
Honestly, that's the right answer. "Ask the manufacturer."

I remember one or two very inexpensive ball valve manufacturers who didn't have that information though. They weren't industry quality valves, they were more like valves for home or garden use that didn't have a Cv rating. If that's the case, you can relate Cv to equivalent length as Fred was starting to discuss. Note that:
K = 891*d^4 / Cv^2
Where K = resistance coefficient referenced in Fred's post
d = inside diam (inches)

Now you can take Fred's equation and this one and you're left with one additional unknown, which is friction factor, f. Sorry, but you can't get any better than that. You have to make an assumption on f as Fred mentions.

The other way I'd suggest depends on whether or not this is a reduced port ball valve (ie: one that has a ball with an ID smaller than the ID of the pipe). If the ID of the ball is the same as the ID of the pipe, just neglect the valve altogether and assume it's a straight section of pipe. If the valve is a reduced port, calculate the resistance coefficient, K for a sudden contraction, and another for a sudden expansion, add them together, and relate that to Cv from the equation I gave above.

Attached is a paper that reviews some of this, and in which you can find sudden expansion and contraction coefficients.
 

Attachments

Many thanks for your answers, they were really helpful and also the pdf.
 
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top