Heating gases at constant pressure or constant volume?

twiztdlogik
Messages
12
Reaction score
0
if i was to heat a gas [any gas] by 10 degrees celcius, using the smallest amount of heat energy, would i be better off heating the gas at constant pressure or constant volume. i think constant pressure, however i don't know how to justify my answer...:confused:

cheers
 
Physics news on Phys.org
You'll want to look for the specific heat capacity of an ideal gas at constant volume and at constant pressure, and compare them. The smaller heat capacity means it takes less heat to raise the temperature of the gas by a chosen amount.
 
Alternatively, you could think about extra energy being lost or gained, for the cases where pressure is constant or volume is constant.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top