Centripetal motion and universal gravitation question: Mars and Sun question

AI Thread Summary
Mars orbits the Sun in approximately 1.88 Earth years with a radius of 2.28 x 10^8 km. The orbital speed of Mars is calculated to be 2.43 x 10^4 m/s, derived from the circumference of its orbit divided by the orbital period. To find the mass of the Sun, the formula V^2 = (G)(m1(sun))/r is used, leading to a calculated mass of approximately 2.02 x 10^8 (N)m/kg^2. However, there are concerns about unit consistency in the calculations, particularly in the final steps. Proper unit conversion and simplification are crucial for accurate results.
zeion
Messages
455
Reaction score
1

Homework Statement


Mars travels around the Sun in 1.88 (Earth) years, in an approximately circular orbit with a radius of 2.28 x 10^8 km
Determine
a) the orbital speed of Mars (relative to the Sun)
b) the mass of the Sun


Homework Equations



acceleration centripetal = 4(pi^2)(r) / (T^2)
universal attraction = (G)(m1)(m2) / (radius)^2


The Attempt at a Solution



Given:
T = 1.88 years = 59287680s = 5.9x10^7s
r = 2.28 x 10^8km = 2.28 x 10^11m


Orbital speed means centripetal acceleration yes?
Then,

acceleration centripetal = 4(pi^2)(r) / (T^2)
acceleration centripetal = 4(9.869604401)(2.28x10^11m) / (34.81x10^14s)
acceleration centripetal = 90.01x10^11m / 34.81x10^14s
acceleration centripetal = 2.59x10^-3m/s = 0.00259m/s

How come its so slow?
 
Physics news on Phys.org
zeion said:
Orbital speed means centripetal acceleration yes?
No. Speed is distance divided by time, not acceleration.
 
Ok so,
Mars travels around the Sun once every 1.88 years. So I have to find the distance of that circle and divide it by the time to find the speed. I have the radius, so I have to find the perimeter.

Perimeter of circle is 2(pi)(r)
So the distance traveled is 14.33x10^11m

In 1.88 years = 5.9x10^7s
So the speed is 14.33x10^11m / 5.9x10^7s = 2.43x10^4m/s yes?
 
Good.
 
Now can I use this formula to solve for mass of Sun?
V^2 = (G)[m1(sun)] / r
[m1(sun)] = (V^2)(r) / (G)
[m1(sun)] = (2.43x10^4m/s)^2(2.28 x 10^11m) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = (5.9x10^8m^2/s^2)(2.28 x 10^11m) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = (13.45x19^19m^3/s^2) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = 2.02x10^8(N)m/kg^2

Why are the units all weird?
 
zeion said:
Now can I use this formula to solve for mass of Sun?
V^2 = (G)[m1(sun)] / r
Good.
[m1(sun)] = (V^2)(r) / (G)
[m1(sun)] = (2.43x10^4m/s)^2(2.28 x 10^11m) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = (5.9x10^8m^2/s^2)(2.28 x 10^11m) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = (13.45x19^19m^3/s^2) / [6.67x10^-11(N)(m^2)/kg^2]
[m1(sun)] = 2.02x10^8(N)m/kg^2
In your last step you didn't divide the units properly. You should have gotten:
[m^3/s^2]/[(N)(m^2)/kg^2] = [m^3/s^2]*[kg^2/(N)(m^2)] = [m kg^2]/[N s^2]

To simplify further, express Newtons in terms of more fundamental units:
N = kg-m/s^2
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top