There is a theorem that says: Let H be a subgroup of order t in a group G of order 2t. Then: H is normal in G, and moreover G/H={H,K}, where K consists of the t elements of G not in H.
Proof: Let g be an element of G such that g is in H. Then gH (the left coset) consists of exactly t elements as well. Moreover, since H is a subgroup=>gH=H=Hg.
Now, let r be any other element such that r is not in H. Then rH and H are going to be disjoint cosets(by another proposition: Two cosets are either identical or disjoint). But, again, rH must have exactly t elements, but in this case these t elements are the ones not contained in H, but rather in K. Now, the union of such cosets should give us the group G itself.
G={gH,rH}={Hg,Hr}=>gH=Hg => H<G (H is normal in G)
Edit: Another part of this theorem which probbably would help you prove what you want to prove is that: for every element g of G => g^2 is in H.
What i would probbably try to do is first determine how many three cycle permutations i.e. (abc) we have in A_5, and then how many 5-cycle, how many of the form (ab)(cd) etc. Then, this would give you an idea, say if there were a subgroup H of order 6, then all 3-cycles should be in H. Now, if the number of 3-cycles is greater than 6, then this would tell you that there is no such group of ord 6. So, try to work sth along these lines.
Edit2: As a matter of fact, from the top of my head i know that A5 does not have any normal subgroups of index 2,3 or 5. This is because,( i don't know whether you have been introduced yet), the group A_5 is not solvable.
In this case, since if a subgroup of ord 30 exists, then it must be normal, then if it is normal its index in A5 is 2, but since there is no normal subgroup of index 2 in A5, we conclude that there is no subgroup of ord 30 in A5.
Do you follow? (You still need fo fill in the 'why's?" though...
