Saul
- 271
- 4
Skyhunter said:No it isn't. 20,000 years ago was the coldest part of the last glacial period and insolation at 65N was ~20Wm2 less than it is today.
Insolation was not 20 W/m^2 less at 65N 20,000 years in the summer. (Note the summer insolation at 65N is supposedly important in Milankovitch's theory.) 20,000 years ago was the start of the current interglacial. 20,000 years ago perihelion (earth's closest approach to the sun) occurred in June. Therefore summers at 65N 20,000 years ago were significantly warmer (due to insolation) than they are today. (Planet was still cold 20,000 years ago as the massive ice sheets were starting to melt. Have you heard about the glacial/interglacial cycle?)
Currently the Earth is farthest from the sun in June and closest to the sun in January. Therefore summers at 65N are colder due to insolation than they were 20,000 years ago. The insolation during summers at 65N is the same today as it was during the coldest part of the last glacial period.
Now the question all curious scientific minds want to ask is why does the planet get colder and colder, then at the coldest point in the glacial cycle the ice sheets melt for a short interglacial period and then suddenly there is abrupt cooling. What is the 100 kyr problem? (See link at end of this comment.)
Do you know anything about Milankovitch's flawed theory? Do please explain the mechanism. I am curious about your thoughts and knowledge of obvious flaws in Milankovitch's theory. Great theory if one ignores the paradoxes.
http://ocean.mit.edu/~cwunsch/papersonline/milankovitchqsr2004.pdf
www.soest.hawaii.edu/GG/FACULTY/POPP/Lecture14.pp[/URL][url]http://en.wikipedia.org/wiki/Milankovitch_cycles[/url][QUOTE]100,000-year problem“Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change” by Carl Wunsch
“A number of records commonly described as showing control of climate change by Milankovitch insolation forcing are re-examined. The fraction of the record variance attributable to orbital changes never exceeds 20%. In no case, including a tuned core, do these forcing bands explain the overall behavior of the records. At zero order, all records are consistent with stochastic models of varying complexity with a small superimposed Milankovitch response, mainly in the obliquity band. Evidence cited to support the hypothesis that the 100 Ka glacial/interglacial cycles are controlled by the quasi-periodic insolation forcing is likely indistinguishable from chance, given the small sample size and near-integer ratios of 100 Ka to the precessional periods. At the least, the stochastic background‘‘noise’’ is likely to be of importance.”
Evidence that Milankovitch forcing ‘‘controls’’ the records, in particular the 100 ka glacial/interglacial, is very thin and some what implausible, given that most of the high frequency variability lies elsewhere.
[B]The 100,000-year problem[/B] is that the eccentricity variations have a significantly smaller impact on solar forcing than precession or obliquity and hence might be expected to produce the weakest effects. However, observations show that during the last 1 million years, the strongest climate signal is the 100,000-year cycle. In addition, despite the relatively large 100,000-year cycle, some have argued that the length of the climate record is insufficient to establish a statistically significant relationship between climate and eccentricity variations.[6] Some models can however reproduce the 100,000 year cycles as a result of non-linear interactions between small changes in the Earth's orbit and internal oscillations of the climate system.[7][8][/QUOTE]
[QUOTE][B]The 400,000-year problem[/B] is that the eccentricity variations have a strong 400,000-year cycle. That cycle is only clearly present in climate records older than the last million years. If the 100 ka variations are having such a strong effect, the 400 ka variations might also be expected to be apparent. This is also known as the stage 11 problem, after the interglacial in marine isotopic stage 11 which would be unexpected if the 400,000-year cycle has an impact on climate. The relative absence of this periodicity in the marine isotopic record may be due, at least in part, to the response times of the climate system components involved — in particular, the carbon cycle.[/QUOTE][QUOTE][B]The stage 5 problem[/B] refers to the timing of the penultimate interglacial (in marine isotopic stage 5) which appears to have begun 10 thousand years in advance of the solar forcing hypothesized to have been causing it. [B]This is also referred to as the causality problem.[/B] Effect exceeds cause 420,000 years of ice core data from Vostok, Antarctica research station.[/QUOTE]
[QUOTE]The effects of these variations are primarily believed to be due to variations in the intensity of solar radiation upon various parts of the globe. Observations show climate behaviour is much more intense than the calculated variations. Various internal characteristics of climate systems are believed to be sensitive to the insolation changes, causing amplification (positive feedback) and damping responses (negative feedback).
[B]The unsplit peak problem[/B] The unsplit peak problem refers to the fact that eccentricity has cleanly resolved variations at both the 95 and 125 ka periods. A sufficiently long, well-dated record of climate change should be able to resolve both frequencies [5], but some researchers interpret climate records of the last million years as showing only a single spectral peak at 100 ka periodicity. It is debatable whether the quality of existing data ought to be sufficient to resolve both frequencies over the last million years.
[/QUOTE]
[QUOTE][B] The transition problem[/B]
[B]The transition problem[/B] refers to the change in the frequency of climate variations 1 million years ago. From 1-3 million years, climate had a dominant mode matching the 41 ka cycle in obliquity. After 1 million years ago, this changed to a 100 ka variation matching eccentricity. No reason for this change has been established.[/QUOTE]
Last edited by a moderator: